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A stereo vision system for pedestrian detection and orientation estimation was successfully 

developed, speed-optimized and integrated onto the FROG robot. Stand-alone evaluation 

suggests that perception performance is good; this remains to be confirmed in connection 

with the other FROG modules, especially with the module on navigation. Some further 

parameter optimization of the joint system will be beneficial.  

A 'Visual face analysis' module was developed for FROG project. The function of this module 

is to detect facial landmarks. The module is based on a novel discriminative regression based 

approach for the Constrained Local Models (CLMs) framework, referred to as the 

Discriminative Response Map Fitting (DRMF) method. The method shows impressive 

performance in the generic face fitting scenario. It is suitable for handling dynamic 

backgrounds, significant amount of clutter/ occlusions and changing illumination conditions. 

This module also supports the further development of a set of visual methods for detecting 

human affective states including users' positive and negative reactions to FROG robot and 

their overall level of interest and engagement when interacting with the robot. These visual 

methods are to be developed for future deliverables in FROG project. 



Fun Robotic Outdoor Guide

Work package 3.1 description

J. Shen, I. Marras and M. Pantic
Imperial College London

M. C. Liem, J. F. P. Kooij and D. M. Gavrila
University of Amsterdam

1



Chapter 1

Introduction

In FROG project, the robot should be able to navigate outdoors, in typical tourist sce-
narios. There are two main tasks to be performed:

• Pedestrian detection provides the necessary initialization for person tracking, at
larger distances to the robot (up to about 25 m). At closer distance (up to about
15m), the overall person body orientation is estimated. This provides important
cues regarding the focus of attention and willingness to interact. FROG uses
stereo-vision, for its accurate object localization and discrimination capability.
The person detection and body orientation estimation component is described in
Chapter 2.

• When the persons are quite close to the robot, facial expression analysis has to
be performed. To do this, a method for feature extraction suitable for handling
dynamic backgrounds, significant amount of clutter/ occlusions and changing il-
lumination conditions, is needed. For the face and the head, to be observed with a
high-resolution camera, multi-person face detection, face tracking, and head pose
estimation, regardless of head pose, clutter, and variations in lighting conditions
need to be solved. The problem is difficult due the fact that not only the observed
persons move and may occlude each other, but that the observation camera moves
as well and may jitter due to the movements of the robot. Robust, fast and ef-
fective image registration should be developed. To enable feature-based facial
gesture and gaze recognition, facial feature points tracking in the detected face
region are attempted as well. This task aims further to develop a set of visual
methods for detecting human affective states including user’ positive and nega-
tive reactions to FROG robot and their overall level of interest and engagement
in the current interaction with FROG. The feature extraction method developed
for FROG project, is based on a novel discriminative regression based approach
for the Constrained Local Models (CLMs) framework, referred to as the Discrim-
inative Response Map Fitting (DRMF) method, which shows impressive perfor-
mance in the generic face fitting scenario. Face analysis is described in Chapter
3.
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Chapter 2

Person detection and body orientation
estimation module

Figure 2.1: Three step person detection and orientation estimation. (1) Obstacle detec-
tion using stereo information. (2) Person classification and orientation estimation using
HOG features and SVM classifier. (3) Person position and orientation tracking.

An important part of the FROG system is the detection of potential persons of interest
in front of the robot. Much research has been done on the subject of person detection,
tracking and pose estimation. Much previous work however assumes stationary cam-
eras, controlled backgrounds, single persons in the scene, several overlapping cameras
or a combination thereof. Extensive overviews of the field have been provided in [22]
and [12].

For the FROG project, the challenge consists of dealing with a moving platform in
dynamic, outdoor environments with uncontrollable illumination. These environments
can contain many persons, giving rise to a significant amount of occlusions. Persons
are to be located at distances between 3 and 25 meters in front of the robot. This is
done in three steps: obstacle detection, person classification and tracking. Furthermore,
together with person classification, the person orientation is determined. This can be
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CHAPTER 2. PERSON DETECTION AND BODY ORIENTATION ESTIMATION MODULE4

used to determine if the persons of interest are facing the robot or facing away from
the robot. Furthermore, this information can be used to determine if multiple people
standing close to each other are likely to be interacting with each other. This kind of
information is useful in order to determine if the robot should approach the persons and
offer help. An overview of the three steps is given in Figure 2.1.

Data is captured using two calibrated Dalsa HM1400 XDR cameras in a small base-
line stereo setup, using a baseline of 22 cm. We use a 6 mm lens for a field of view
of 82o horizontally and 61o vertically. The stereo rig is placed at about 1.2 m height.
The stereo cameras are aligned such to have their optical axes approximately parallel
to each other and to the ground plane. The cameras record 10 bit grayscale images
at 1400 x 1024 pixels. Automatic gain and shutter control were implemented to con-
trol image contrast and illumination while recording, without halting person detection.
Camera calibration is performed offline using OpenCV stereo calibration tools. Using
the calibration information, a fixed ground plane is computed using markers put on the
floor in front of the cameras. Stereo computation is performed using the Library for
Efficient Large-scale Stereo Matching (LIBELAS) [14], which offers high speed high
quality stereo disparity map computations. An example of a stereo disparity map can
be found in the leftmost image in Figure 2.1. A picture of the stereo setup used can be
found in Figure 2.2.

Figure 2.2: The stereo setup used for the FROG platform.

The use of stereo information is beneficial for selecting ROI to be processed by the
person classifier. Instead of using a calibrated stereo rig, other options would be to use
a time of flight camera or a structured light solution like offered by Microsoft’s Kinect
sensor. While these alternative methods offer fast and accurate depth reconstructions,
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the major issue with these systems lies in the fact that they rely on active illumination.
Time of flight cameras measure the time it takes to receive the reflections of a light
pulse emitted by the camera, while structured light systems project a regular pattern
onto the scene and record the pattern’s distortion. When using such systems outside,
the light emitted by the cameras is quickly overpowered by the environment lighting.
This is especially the case in outside environments. Furthermore, the depth range for
these sensors is much more limited than when using a stereo setup, since the projected
light dissipates at distances further away from the camera. Depending on the baseline
used for a stereo setup, a stereo system can see further away from the camera and is
only disturbed by illumination conditions when the camera’s gain and shutter settings
are incorrect.

In the first step, obstacle detection, stereo information is leveraged to determine which
locations in the scene have sufficient depth support for a person. This is done similar
to the method described in [17]. Regions of interest (ROIs) are computed for fixed
locations on the ground plane. ROIs are placed on the ground plane at 46 equally spaced
intervals between 2 and 25 meters from the camera. Multiple ROI scales are used,
representing 16 different ROI sizes between 1.2 and 2 meters high. ROIs are created in
image coordinates positioned from the left edge of the image to the right edge at equal
intervals, ensuring sufficient overlap such that people in the scene won’t fall in between
ROIs. These values represent parameters that can be easily configured to the FROG
scenario at hand; their setting involves a trade-off between computational effort on one
hand, and detection and orientation estimation performance, on the other hand.

For each of the 46 depth levels, a binary image is created representing all pixels that
have stereo support at that depth level. Integral images are used to determine for each
ROI whether or not sufficient depth support is available within that ROI at that depth
level to possibly contain a person. A ROI is accepted for further processing when at
least 30% of its area is supported at that level.

After filtering the ROIs using the stereo information, the remaining ROIs are used for
person classification and body orientation estimation. Person classification is based on
Histogram of Oriented Gradients (HOG) features and a linear Support Vector Machine
(SVM) classifier, as proposed by [11]. For efficiency reasons, all regions of interest
are re-scaled such that the ratio between ROI width and height equals 1:2. The classi-
fier is trained on a dataset containing 48 x 96 pixel images, split up into two different
classes containing either persons or background clutter. This training dataset was kindly
supplied by the authors of [13]. The HOG features of all ROIs of the same scale are
computed efficiently making use of integral images. The image is scaled such that the
ROI to be evaluated are 48 x 96 pixels and classified using the trained SVM. ROIs at
multiple scales are processed in parallel for more efficient processing.



CHAPTER 2. PERSON DETECTION AND BODY ORIENTATION ESTIMATION MODULE6

Figure 2.3: Polar plots of the Gaussian mixture model used for orientation estimation.
Left: unweighted components, Right: weighted components, accumulated mixture den-
sity and classified image. This figure was taken from [13] with the authors’ permission.

Retrieving the person body orientation is done simultaneously with person classifi-
cation, according to the method described in [13]. Instead of training the SVM to only
classify person or non-person ROIs, 4 experts are trained on 4 person orientations: front
facing, back facing, left facing and right facing. In order to get the actual body orien-
tation instead of just the classifier result, the posterior probabilities for each of the 4
orientations, resulting from the classification, are used to create a mixture of experts.
This is done by using the posterior probabilities of each class as mixing weights in a
Gaussian mixture model. The Gaussian components have means at 0o, 90o, 180o and
270o and all have a standard deviation of 45o. The maximum likelihood orientation can
now be determined by locating the maximum of the Gaussian mixture model. An ex-
ample of the non-weighted and weighted mixture models, visualized in a polar plot, can
be found in Figure 2.3.

The final step is tracking the person detections and the orientation estimates. Because
the ROIs are positioned close to each other, having significant overlap, multiple ROIs
remaining after stereo filtering will cover the same person. In order to reduce these ROIs
to only 1 ROI per person, mean shift based non-maxima suppression will be applied as
suggested in [10]. Based on the position, scale and person probability, ROIs in close
proximity of each other are clustered using the mean shift algorithm and a new ROI
representing this cluster is used as the detected person location. The maximum person
likelihood over all ROIs in the cluster is used as the new ROI person likelihood.

Person positions are tracked in the 2D image plane using a constant velocity Kalman
filter, based on the ROI scale and (x, y) position in the image. The person probability is
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filtered over time using a low-pass filter. When the filtered person probability exceeds
a value of 0.4, a new track is accepted. When no new detections are found near the
tracker and the filtered person probability becomes less than 0.2 the track is deleted
again. The assignment of tracks to detections is based on the Mahanalobis distance
between the detections and the Kalman filter predictions of the track positions. The
Hungarian algorithm [23] is used to find an optimal assignment between all tracks and
detections.

Figure 2.4: Tracking results on data recorded at the Real Alcázar test site in Sevilla.
Ellipses below the pink ROI show the full orientation estimation pdf as a polar plot.
The line inside each ellipse represents the current maximum likelihood orientation.

The person orientation is also filtered over time using a Kalman filter. However,
instead of directly filtering the estimated orientation, the full orientation probability
density function (pdf) is filtered. This is done by Kalman filtering the mixture weights
of the 4 experts in the mixture model. This allows us to retain more information on
the full pdf over time and make a more accurate orientation estimate. Figure 2.4 shows
some examples of frames with tracking results on data recorded at the Real Alcázar test
site in Sevilla.
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Currently, the pedestrian detection rate is about 90% with about 1 false positive every
15-20 mins, at track level. The trade-off between detection rate and the number of
false positives is controlled by underlying thresholds, and can be modified. The error
in orientation estimation, and its increase with larger pedestrian distance, is analyzed in
Figure 2.5.

Figure 2.5: Orientation estimation error over distance (ground truth visually estimated
from images). Boxplot shows median inside box containing 50% of data points, and
whisker length containing 99.3% of data, if normally distributed. In red: per frame, in
blue: after tracking.

In order to boost computational speed, the first two steps of the process have been
parallelized. Besides parallelizing the person classification at different scales, as dis-
cussed earlier, the complete first and second step are run in parallel. While one thread
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is classifying the stereo filtered ROI for person presence, another thread is already com-
puting the stereo information for the next frame to be processed. This parallelization
allows running the complete system at 10 Hz using a 3.7 Ghz quad core Intel Core i7
processor and 16 GB RAM. This speed is sufficient for real-time system operation on
the FROG platform.

Finally, the person detection, tracking and orientation estimation system has been
integrated into the FROG robot platform. Stereo information is shared with the local-
ization and path planning module developed by UPO. Raw data of the JPEG compressed
left stereo image and the stereo disparity map in sent over a standard TCP/IP connec-
tion. This information also includes the image timestamps and stereo calibration matri-
ces. Detection data is coded using JSON and sent over a Websockets connection. This
information contains a timestamp, the ROI found, their location on the ground plane
with respect to the camera, their person detection probability and the maximum likeli-
hood orientation estimate. To allow further orientation analysis, the full orientation pdf,
discretized over 360o, is sent as well.



Chapter 3

Visual face analysis module

In FROG, given that the focus lies on locating persons in groups in outdoor spaces
and to perform facial expression analysis, the method for feature extraction should be
suitable for handling dynamic backgrounds, significant amount of clutter/ occlusions
and changing illumination conditions. For the face and the head, to be observed with a
high-resolution camera, multi-person face detection, face tracking, and head pose esti-
mation, regardless of head pose, clutter, and variations in lighting conditions need to be
solved. The problem is difficult due the fact that not only the observed persons move
and may occlude each other, but that the observation camera moves as well and may
jitter due to the movements of the robot. Robust, fast and effective image registration
should be developed. To enable feature-based facial gesture and gaze recognition, facial
feature points tracking in the detected face region are attempted as well. This task aims
further to develop a set of visual methods for detecting human affective states including
users’ positive and negative reactions to FROG robot and their overall level of interest
and engagement in the current interaction with FROG.

The ’Visual face analysis’ module takes as an input an image taken by the DALSA
camera and provides as an output the 66 facial landmarks depicted in Figure 3.1, as
well as the pitch, yaw and roll angles that define the face pose estimation. The module
is based on a novel discriminative regression based approach for the Constrained Lo-
cal Models (CLMs) framework, referred to as the Discriminative Response Map Fitting
(DRMF) method, which shows impressive performance in the generic face fitting sce-
nario. The motivation behind this approach is that, unlike the holistic texture based fea-
tures used in the discriminative AAM approaches, the response map can be represented
by a small set of parameters and these parameters can be very efficiently used for re-
constructing unseen response maps. Furthermore, by adopting very simple off-the-shelf
regression techniques, it is possible to learn robust functions from response maps to the
shape parameters updates. The detailed experiments in a generic face fitting scenario on
the databases with images captured under both the controlled (Multi-PIE and XM2VTS)
and uncontrolled natural setting (LFPW Database), show that the DRMF method out-
performs state-of-the-art algorithms for the task of generic face fitting. Moreover, the
DRMF method is computationally very efficient and is real-time capable. The current
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CHAPTER 3. VISUAL FACE ANALYSIS MODULE 11

MATLAB implementation is a real time procedure. In the next sections, more details
about the algorithm that it is used in this module, are provided.

Figure 3.1: The 66 points mark-up provided by the module.

3.1 The Problem
The aim of a facial deformable model is to infer from an image the facial shape (2D

or 3D, sparse [8, 4] or dense [6]), controlled by a set of parameters. Facial deformable
models can be roughly divided into two main categories: (a) Holistic Models that use
the holistic texture-based facial representations; and (b) Part Based Models that use the
local images patches around the landmark points. Notable examples of the first category
are AAMs [8, 4] and 3D deformable models [6]. While the second category includes
models such as Active Shape Models (ASMs) [9], Constrained Local Models (CLMs)
[27] and the tree-based pictorial structures [29].

3.1.1 Holistic Models
Holistic models employ a shape model, typically learned by annotating n fiducial

points xj = [xj, yj]
T n

j=1 and, then, concatenating them into a vector s = [x1, . . . ,xn]T .
A statistical shape model S can be learned from a set of training points by applying
PCA. Another common characteristic of holistic models is the motion model, which
is defined using a warping function W(x; s). The motion model defines how, given a
shape, the image should be warped into a canonical reference frame (usually defined by
the mean shape). This procedure is called shape-normalization and produces shape-free
textures. Popular motion models include piece-wise affine and Thin-Plate Splines [4, 2].
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The holistic models can be further divided according to the way the fitted strategy is
designed. In generative holistic models [3, 19], a texture model is also defined besides
the shape and motion models. The fitting is performed by an analysis-by-synthesis
loop, where, based on the current parameters of the model, an image is rendered. The
parameters are updated according to the residual difference between the test image and
the rendered one. In probabilistic terms, these models attempt to update the required
parameters by maximizing the probability of the test sample being constructed by the
model. In discriminative holistic models, the parameters of the model are estimated by
either maximizing the classification score of the warped test image, so that it belongs
to the class of the shape-free textures [18], or by finding a set of functions that map the
holistic texture features to the shape model parameters [24, 25].

Drawbacks of Holistic Models: (1) For the case of the generative holistic models,
the task of defining a linear statistical model for the texture that explains the variations
due to changes in identity, expressions, pose and illumination is not an easy task. (2)
Similarly, due to the numerous variations of facial texture, it is not easy to perform
regression from texture features to shape parameters (in a recent methodology whole
shape regression is performed from randomly selected texture samples [7]). (3) Partial
occlusions cannot be easily handled. (4) The incorporation of a 3D shape model is not
easy due to the need of defining a warping function for the whole image; inclusion of a
3D shape model can be performed by sacrificing efficiency [1] (there is not an inverse
compositional framework for the 3D case [20]) or by carefully incorporating extra terms
in the cost function (which again is not a trivial task [20]).

3.1.2 Part Based Models
The main advantages of the part-based models are (1) partial occlusions can be easier

to handled since we are interested only in facial parts, (2) the incorporation of a 3D facial
shape is now straightforward since there is no warping image function to be estimated.
In general, in part-based representations the model setup is M = {S,D} where D is
a set of detectors of the various facial parts (each part corresponds to a fiducial point
of the shape model S). There are many different ways to construct part-based models
[27, 29], however we will focus only on ASMs and CLMs [27].

The 3D shape model of CLMs can be described as:
s(p) = sR(s0 + Φsq) + t, (3.1)

where R (computed via pitch rx, yaw ry and roll rz), s and t = [tx; ty; 0] control
the rigid 3D rotation, scale and translations respectively, while q controls the non-
rigid variations of the shape. Therefore the parameters of the shape model are p =
[s, rx, ry, rz, tx, ty,q]. Furthermore, D is a set of linear classifiers for detection of n
parts of the face and is represented as D = {wi, bi}ni=1, where wi, bi is the linear de-
tector for the ith part of the face (e.g., eye-corner detector). These detectors are used to
define probability maps for the ith part and for a given location x of an image I being
correctly located (li = 1) as:
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p(li = 1 | x, I) =
1

1 + e{li(w
T
i f(x;I)+bi)}

. (3.2)

where f(x; I) is the feature extracted from the patch in image I centered at xi. The
probability of not being correctly spotted at x is simply p(li = −1 | x, I) = 1− p(li =
1 | x, I).

In ASM and CLMs, the objective is to create a shape model from the parameters p
such that the positions of the created model on the image correspond to well-aligned
parts. In probabilistic terms, we want to find the shape s(p) by solving the following:

p = arg max p(s(p) | {li = 1}ni=1, I)

= arg max p(p) p({li = 1}ni=1 | s(p), I)

= arg max p(p)
n∏
i=1

p(li = 1 | xi(p), I).

(3.3)

In [27], by assuming a homoscedastic isotropic Gaussian kernel density estimate in a set
of fixed locations {Ψi}ni=1 for every part i (i.e., p(li = 1|xi(p, I) =

∏n
i=1

∑
yi∈Ψi

p(li =
1 | yi, I)N (xi(p) | yi, ρI), the above optimization problem can be reformulated as:

p = arg max p(p)
n∏
i=1

∑
yi∈Ψi

p(li = 1 | yi, I)N (xi(p) | yi, ρI).

(3.4)

For the case of the prior p(p), which acts as a regularization term, the standard choice
is a zero mean Gaussian prior over q (i.e., p(p) = N (q | 0,Λ)). The above optimization
problem was solved in [27] using an Expectation-Maximization (EM) algorithm. The
Expectation step concerns the computation of p(yi|li = 1,xi, I), given the parameters
p, while the Maximization step involves the minimization of:

Q(p) = ||q||−1Λ +

n∑
i=1

∑
yi∈Ψi

p(yi|li = 1,xi, I)

ρ
||xi(p)− yi||2

which can be solved using a Gauss-Newton optimization. This method is known as
Regularized Landmark Mean-Shift (RLMS) [27] fitting. Even though it has been shown
that the above optimization problem can produce state-of-the-art results it can also suffer
from local minimum problem, as all Gauss-Newton optimization methodology.

3.2 Discriminative Response Map Fitting
The module follows a different direction to the RLMS approach for the part-based

models discussed in the above Section 3.1.2. Instead of maximizing the probability
of a reconstructed shape, given that all parts are correctly located in the image, (i.e.,
p(s(p) | {li = 1}ni=1, I)), we propose to follow a discriminative regression framework
for estimating the model parameters p. That is, we propose to find a mapping from the
response estimate of shape perturbations to shape parameter updates. In particular, let
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us assume that in the training set we introduce a perturbation ∆p and around each point
of the perturbed shape we have response estimates in a w × w window centered around
the perturbed point, Ai(∆p) = [p(li = 1 | x + xi(∆p)]. Then, from the response
maps around the perturbed shape {Ai(∆p)}ni=1 we want to learn a function f such that
f({Ai(∆p)}ni=1) = ∆p. We call this the Discriminative Response Map Fitting (DRMF)
method. The motivation behind this choice was the fact that, contrary to texture features
in holistic regression based AAM frameworks [24, 25], response maps (1) can be very
well represented by a small set of parameters and (2) learned dictionaries of probability
response maps could very faithfully reconstruct response maps in unseen images.

Overall, the training procedure for the DRMF method has two main steps. In the
first step, the goal is to train a dictionary for the response map approximation that can
be used for extracting the relevant feature for learning the fitting update model. The
second step involves iteratively learning the fitting update model which is achieved by a
modified boosting procedure. The goal here is to learn a set of weak learners that model
the obvious non-linear relationship between the joint low-dimensional projection of the
response maps from all landmark points and the iterative 3D shape model parameters
update (∆p).

3.2.1 Training Response Patch Model
Before proceeding to the learning step, the goal is to build a dictionary of response

maps that can be used for representing any instance of an unseen response map. In
other words, our aim is to represent Ai(∆p) using a small number of parameters. Let
us assume we have a training set of responses {Ai(∆pj)}j=1 for each point i with
various perturbations (including no perturbation, as well). A simple way to learn the
dictionary for the i-th point is to vectorize the training set of responses, stack them in a
matrix Xi = [vec(Ai(∆p1)), . . . , vec(Ai(∆pn))] and since we deal with non-negative
responses, the natural choice is to perform Non-negative Matrix Factorization (NMF)
[28]. That way the matrix is decomposed into Xi ≈ ZiHi where Zi is the dictionary
and Hi are the weights. Now, given the dictionary Zi, the set of weights for a response
map window Ai for the point i can be found by:

hoi = arg max
hi

||Zihi − vec(Ai)||2, s.t hi ≥ 0 (3.5)

which can be solved using NMF strategies [28]. Then, instead of finding a regression
function from the perturbed responses {Ai(∆p)}ni=1, we aim at finding a function from
the low-dimensional weight vectors {hi(∆p)}ni=1 to the update of parameters ∆p.

For practical reasons and to avoid solving the optimization problem (3.5) for each part
in the fitting procedure, instead of NMF we have also applied PCA on {Ai(∆pj)}Nj=1.
Using PCA, the extraction of the corresponding weigh vector hi can be performed very
efficiently by just a simple projections on the PCA bases. An illustrative example on
how effectively a response map can be reconstructed by as small number of PCA compo-
nents (capturing 85% of the variation) is shown in Figure 3.2. We refer to this dictionary



CHAPTER 3. VISUAL FACE ANALYSIS MODULE 15

as Response Patch Model represented by:

{M,V} : M = {mi}ni=1 andV = {Vi}ni=1 (3.6)

where, mi and Vi are the mean vector and PCA bases, respectively, obtained for each
of the n landmark points.

(a) (b)

15 Components

13 Components

19 Components

24 Components

14 Components

15 Components

16 Components

Figure 3.2: Overview of the response patch model: (a) Original HOG based response
patches. (b) Reconstructed response patches using the response patch model that cap-
tured 85% variation.

3.2.2 Training Parameter Update Model
Given a set of N training images I and the corresponding shapes S, the goal is to

iteratively model the relationship between the joint low-dimensional projection of the
response patches, obtained from the response patch model {M , V}, and the param-
eters update (∆p). For this, we propose to use a modified boosting procedure in that
we uniformly sample the 3D shape model parameter space within a pre-defined range
around the ground truth parameters pg (See Eqn. 3.1), and iteratively model the relation-
ship between the joint low-dimensional projection of the response patches at the current
sampled shape (represented by tth sampled shape parameter pt) and the parameter up-
date ∆p (∆p = pg − pt). The step-by-step training procedure is as follow:

Let T be the number of shape parameters set sampled from the shapes in S, such that
the initial sampled shape parameter set is represented by P(1):



CHAPTER 3. VISUAL FACE ANALYSIS MODULE 16

P(1) = {p(1)
j }Tj=1 and ψ(1) = {∆p

(1)
j }Tj=1 (3.7)

‘1’ in the superscript represents the initial set (first iteration). Next, extract the response
patches for the shape represented by each of the sampled shape parameters in P(1)

and compute the low-dimensional projection using the response patch model {M,V}.
Then, concatenate the projections to generate a joint low-dimensional projection vector
c(∆p

(1)
j ) = [h1(∆p

(1)
j ), . . . ,hn(∆p

(1)
j )]T , one per sampled shape, such that:

χ(1) = {c(∆p
(1)
j )}Tj=1 (3.8)

where, χ(1) represents the initial set of joint low-dimensional projections obtained from
the training set. Now, with the training set T (1) = {χ(1), ψ(1)}, we learn the fitting
parameter update function for the first iteration i.e. a weak learner F (1):

F (1) : ψ(1) ← χ(1) (3.9)

We then propagate all the samples from T (1) through F (1) to generate T 1
new and elim-

inate the converged samples in T (1)
new to generate T (2) for the second iteration. Here,

convergence means that the shape root mean square error (RMSE) between the pre-
dicted shape and the ground truth shape is less than a threshold (for example, set to
2 for the experiments). Any regression method can be employed in our framework.
We have chosen a simple Linear Support Vector Regression (SVR) [16] for each of the
shape parameters. In total, we used 16 shape parameters i.e. 6 global shape parameters
and the top 10 non-rigid shape parameters. Structured regression based approaches can
also be employed but we opted to show the power of our method with a very simple
regression frameworks.

In order to replace the eliminated converged samples, we generate a new set of sam-
ples (Eqn. 3.7 and Eqn. 3.8) from the same images in I whose samples converged in the
first iteration. We propagate this new sample set throughF1 and eliminate the converged
samples to generate an additional replacement training set for the second iteration T (2)

rep .
The training set for the second iteration is updated:

T (2) ← {T (2), T (2)
rep } (3.10)

and the fitting parameter update function for the second iteration is learnt i.e. a weak
learner F (2). The sample elimination and replacement procedure for every iteration
have two-fold benefits. Firstly, it plays an important role in insuring that the progres-
sive fitting parameter update functions are trained on the tougher samples that have not
converged in the previous iterations. And secondly, it helps in regularizing the learn-
ing procedure by correcting the samples that diverged in the previous iterations due to
overfitting.

The above training procedure is repeated iteratively until all the training samples have
converged or the maximum number of desired training iterations (η) have been reached.
The resulting fitting parameter update model U is a set of weak learners:

U = {F (1), . . . ,F (η)} (3.11)

The training procedure is outlined in Algorithm 1.
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Algorithm 1: Training Parameter Update Model
Require: PDM (Eqn. 3.1), I, S, {M,V} (Eqn. 3.6).

1 Get initial shape parameters sample set (Eqn. 3.7). ;
2 Get initial joint low-dimensional projection set (Eqn. 3.8). ;
3 Generate training set for first iteration T (1). ;
4 for i = 1→ η do
5 ;
6 Compute the weak learner F (i) using T (i). ;

7 Propagate T (i) through F (i) to generate T (i)
new. ;

8 Eliminate converged samples in T (i)
new to generate T (i+1). ;

9 if T (i+1) is empty then
10 All training samples converged. Stop Training. ;
11 else
12 Get new shape parameters sample set (Eqn. 3.7) from images whose samples are

eliminated in Step 7. ;
13 Get new joint low-dimensional projection set (Eqn. 3.8) for the samples

generated in Step 11. ;

14 Generate new replacement training set T (i)
rep. ;

15 for j = 1→ (i− 1) do
16 ;

17 Propagate T (i)
rep through F (j). ;

18 Eliminate converged samples in T (i)
rep. ;

19 Update T (i+1) ← {T (i+1), T (i)
rep} ;

Output : Fitting Parameter Update Model U (Eqn. 3.11).

3.2.3 Fitting Procedure
Given the test image Itest, the fitting parameter update model U is used to compute

the additive parameter update ∆p iteratively. The goodness of fitting is judged by the
fitting score that is computed for each iteration by simply adding the responses (i.e. the
probability values) at the landmark locations estimated by the current shape estimate of
that iteration. The final fitting shape is the shape with the highest fitting score.

3.3 Experiments
We conducted generic face fitting experiments on the Multi-PIE [15], XM2VTS [21]

and the LFPW [5] databases. The Multi-PIE database is the most commonly used
database for generic face fitting and is the best for comparison with previous approaches.
Moreover, its consists of thousands of images with combined variations of identity, ex-
pression, illumination and pose, making it a very useful database for highlighting the
ability of the proposed DRMF method (Section 3.2) to handle all these combined vari-
ations accurately in the generic face fitting scenario. The XM2VTS database focuses
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mainly on the variations in identity and is a challenging database in a generic face fitting
scenario because of the large variations in facial shape and appearance due to facial hair,
glasses, ethnicity and other subtle variations. Unlike the Multi-PIE and the XM2VTS,
the LFPW database is a completely wild database, i.e. consists of images captured under
uncontrolled natural settings, and is an extremely challenging database for the generic
face fitting experiment.

For all the experiments, we consider the independent model (p1050) of the tree-based
method [29], released by the authors, as the baseline method for comparison. For the
multi-view CLM approach, the pose range of±30◦ in yaw (i.e. with pose code 051, 050,
140, 041 and 130) is divided into three view-based CLMs with each covering −30◦ to
−15◦, −15◦ to 15◦ and 15◦ to 30◦ in yaw, respectively. Other non-frontal poses have
been excluded from our experiment for the lack of ground-truth annotations.

Another consistent aspect for all the following experiments is the initialization of the
fitting procedure. For CLMs, we directly used the off-the-shelf OpenCV face detector.
However, this face detector often fails on the LFPW dataset and for several images with
varying illumination and pose in Multi-PIE and XM2VTS database. Therefore, for the
images on which the face detector failed, we used the bounding box provided by our
own trained tree-based model p204 (described in the following section) and perturbed
this bounding box by 10 pixels for translation, 5◦ for rotation and 0.1 for scaling factor.
We then initialized the mean face at the centre of this perturbed bounding box.

Overview of Results:

[1] The Multi-PIE experiment focuses on accessing the performance with combined
identity, pose, expression and illumination variation. The results show significant per-
formance gain for the proposed DRMF method over all other methods. Furthermore, the
results show that the CLMs outperform the equivalent tree-based model for the task of
landmark localization. We believe this is due to the use of tree-based shape model that
allows for non-face like structures to occur making it hard to accurately fit the model,
especially for the case of facial expressions.
[2] XM2VTS experiment, performed in an out-of-database scenario, highlights the abil-
ity of the DRMF method to handle unseen variations and other challenging variations
like facial hair, glasses and ethnicity.
[3] LFPW experiment further verifies the generalization capability of the DRMF method
to handle challenging uncontrolled natural variations. The results show that DRMF
outperform RLMS and the tree-based method [29] convincingly on this wild database.
[4] The results on XM2VTS and LFPW database also validate one of the main motiva-
tions behind the DRMF method i.e. the response maps extracted from an unseen image
can be very faithfully represented by a small set of parameters and are suited for the
discriminative fitting frameworks, unlike the holistic texture based features.
[5] FROG experiments include the testing of the DRMF method using challenging
videos that represent the realistic scenarios of the FROG project. The results show
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that DRMF is suitable for handling dynamic backgrounds, significant amount of clutter/
occlusions and changing illumination conditions.

The fitting procedure of the DRMF method is highly efficient and is real-time capable.
The current MATLAB implementation of the Multiview DRMF method, using the HOG
feature based patch experts, takes 1 second per image on Intel Xeon 2.30 GHz proces-
sor. The compiled MATLAB source code and the pre-trained models are available for
research purposes in http://ibug.doc.ic.ac.uk/resources/frog-facial-tracking-component-
code/.

3.3.1 Multi-PIE Experiments
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Figure 3.3: Experiment on Multi-PIE database.

The goal of the this experiment is to compare the performance of the HOG feature
based CLM framework, using the RLMS [27] and the proposed DRMF (Section 3.2)
method, with the tree-based method [29] under combined variations of identity, pose,
expression and illumination. For this, images of all 346 subjects with all six expressions
at frontal and non-frontal poses at various illumination conditions are used. The training
set consisted of roughly 8300 images which included the subjects 001-170 at poses 051,
050, 140, 041 and 130 with all six expressions at frontal illumination and one other ran-
domly selected illumination condition. For this experiment, we train several versions
of the CLMs described below. The multi-view CLMs trained using the HOG feature
based patch experts and the RLMS fitting method is referred as HOG-RLMS-Multiview.
Whereas, the multi-view CLMs trained using the HOG feature based patch experts and
the DRMF fitting method (Section 3.2) is referred as as HOG-DRMF-Multiview. More-
over, we also trained RAW-RLMS-Multiview which refers to the multi-view CLM using
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the RAW pixel based patch experts and the RLMS fitting method. This helps in show-
ing the performance gained by using the HOG feature based patch experts instead of the
RAW pixel based patch experts.

For the tree-based method [29], we trained the tree-based model p204 that share
the patch templates across the neighboring viewpoints and is equivalent to the multi-
view CLM methods, using exactly the same training data for a fair comparison with
CLM based approaches. We did not train the independent tree-based model (equivalent
to p1050) because of its unreasonable training requirements, computational complex-
ity and limited practical utility. Basically, training an independent tree-based model
amounts to training separate models for each variation present in the dataset i.e. dif-
ferent models for every pose and expression. For our dataset that consists of five poses
with all six expressions, an independent tree-based model will require training 2050 part
detectors (i.e. 68 points × 5 poses × 6 expressions = 2050 independent parts). With
preliminary calculations, such a model will require over a month of training time and
nearly 90 seconds per image of fitting time.

The test set consisted of roughly 7100 images which included the subjects 171-346
at poses 051, 050, 140, 041 and 130 with all six expressions at frontal illumination
and one other randomly selected illumination condition. From the results in Figure 3.3,
we can clearly see that the HOG-DRMF-Multiview outperforms all other method by
a substantial margin. We also see a substantial gain in the performance by using the
HOG feature based patch experts (HOG-RLMS-Multiview) instead of the RAW pixel
(RAW-RLMS-Multiview). Moreover, the HOG-RLMS-Multiview also outperform the
equivalent tree-based model p204 for the task of landmark localization. The qualitative
analysis of the results suggest that the tree-based methods [29], although suited for the
task of face detection and rough pose estimation, are not well suited for the task of
landmark localization. We believe, this is due to the use of tree-based shape model that
allows for the non-face like structures to occur frequently, especially for the case of
facial expressions. See the sample fitting results in Figure 3.6.

3.3.2 XM2VTS Experiments
All 2360 images from XM2VTS database [21] were manually annotated with the

68-point markup and are used as the test set. This experiment is performed in an out-of-
database scenario i.e. the models used for fitting are trained entirely on the Multi-PIE
database. We used the HOG-DRMF-Multiview, HOG-RLMS-Multiview and the tree-
based model p204, used for generating results in Figure 3.3, to perform the fitting on the
XM2VTS database. Note that this database consists of only frontal images. Nonethe-
less, the results from Figure 3.4 show that the HOG-DRMF-Multiview outperforms all
other methods again. Moreover, the HOG-RLMS-Multiview outperforms the tree-based
model p204 and the baseline p1050 convincingly.
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This results is particularly important because it highlights the capability of the DRMF
method to handle unseen variations. The generative model based discriminative ap-
proaches [18, 24, 25] have been reported to generalize well for the variations present on
the training set, however, the overall performance of these discriminative fitting meth-
ods have been shown to deteriorate significantly for out-of-database experiments [26].
The results show that not only does DRMF outperform other state-of-the-art approaches
in an out-of-database experiment but also handles the challenging variations in the facial
shape and appearance present in the XM2VTS database due to facial hair, glasses and
ethnicity. This result validates one of the main motivations behind the DRMF method
i.e. the response maps extracted from an unseen image can be very faithfully represented
by a small set of parameters and are suited for the discriminative fitting frameworks, un-
like the holistic texture based features.

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Shape RMS Error

P
ro

po
rt

io
n 

of
 Im

ag
es

 

 

Tree−Based Method (p1050)
Tree−Based Method (p204)
HOG−RLMS−Multiview
HOG−DRMF−Multiview

Figure 3.4: Out-of-database experiment on XM2VTS database.

3.3.3 LFPW Experiments
For further test the ability of the DRMF method to handle unseen variations, we con-

duct experiments using the database that presents the challenge of uncontrolled natural
settings. The Labeled Face Parts in the Wild (LFPW) database [5] consist of the URLs
to 1100 training and 300 test images that can be downloaded from internet. All of these
images were captured in the wild and contain large variations in pose, illumination, ex-
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pression and occlusion. We were able to download only 813 training images and 224
test images because some of the URLs are no longer valid. These images were manually
annotated with the 68-point markup to generate the ground-truths used in this section.

We used the HOG-DRMF-Multiview, HOG-RLMS-Multiview and the tree-based
model p204 trained only on the Multi-PIE database (used previously for generating
results in Figure 3.3) to perform fitting on the LFPW test set. We then augmented the
Multi-PIE training set with the LFPW training set and re-trained the CLM and tree-
based models. We refer to these methods as HOG-Wild-DRMF-Multiview, HOG-Wild-
RLMS-Multiview and the tree-based model p204-Wild. These wild models were then
used to perform fitting on the LFPW test set and the results are reported in Figure 3.5.
Note that the size of the faces in these images vary greatly because of the wild nature
of this dataset. Therefore, we normalized the shape RMSE by the distance between the
eye-corners which we believe is the best way to show unbiased results. From these re-
sults, we can clearly see the dominance of the HOG-Wild-DRMF-Multiview over other
methods.

Firstly, this result clearly show that the proposed response map based discrimina-
tive fitting methodology can handle wild face and further emphasises the suitability
of the parameterized response map models for the discriminative fitting frameworks.
Secondly, an interesting result is the performance gain achieved by augmenting the
Multi-PIE training set with the LFPW training set. Notice that in Figure 3.5, the ac-
curacy of HOG-Wild-DRMF-Multiview increases consistently in comparison to the
HOG-DRMF-Multiview (for example, by over 13% for the cases with Shape RMSE
below 0.05 fraction of inter-ocular distance). Whereas for the same scenario, HOG-
Wild-RLMS-Multiview show little improvement in performance over HOG-RLMS-
Multiview (for example, increases by a little over 2% for the cases with Shape RMSE
below 0.05 fraction of inter-ocular distance). This shows the advantage of the proposed
response map based discriminative fitting approach that uses the available training data
in a more useful way by learning the fitting update model as compared to the RLMS
that rely entirely on the gauss-newton optimization based methodologies.

The results show that the proposed DRMF method outperforms the state-of-the-art
RLMS fitting method [27] and the recently proposed tree-based method [29] consis-
tently across all databases. See the sample fitting results in Figure 3.6.

3.3.4 FROG Experiments
DRMF was created in order to improve the performance in the generic face fitting

scenario. This is a very challenging problem in outdoor spaces, while it is crucial for
the FROG project to fulfill the goal of developing a set of visual methods for detecting
human affective states including users’ positive and negative reactions to FROG robot
and their overall level of interest and engagement. In total, 15 videos were recorded
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Figure 3.5: Wild experiments on LFPW database.

for these experiments using the DALSA camera. We used the HOG-DRMF-Multiview,
HOG-RLMS-Multiview and the tree-based model p204 trained on both Multi-PIE and
LFPW databases. In Figure 3.7 sample fitting results using the videos recorded for
the FROG project, are depicted. Moreover, the DRMF method is computationally very
efficient and real-time capable. The current C++/CUDA implementation is a real-time
procedure with NVIDIA Quadro K1000M graphic card on an Intel CoreTM i5-3360M.
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(a) DRMF Fitting Results

(b) RLMS Fitting Results

(c) Tree-based Model (p204) Fitting Results

Figure 3.6: Sample Fitting Results. Column 1-3: Multi-PIE Results. Column 4-7:
LFPW Results.
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Figure 3.7: Sample fitting results using videos recorded for the FROG project.



Chapter 4

Conclusion

A stereo vision system for pedestrian detection and orientation estimation was suc-
cessfully developed, speed-optimized and integrated onto the FROG robot. Stand-alone
evaluation suggests that perception performance is good; this remains to be confirmed
in connection with the other FROG modules, especially with the module on navigation.
Some further parameter optimization of the joint system will be beneficial.

A ’Visual face analysis’ module was developed for FROG project. The function of
this module is to detect facial landmarks. The module is based on a novel discrimina-
tive regression based approach for the Constrained Local Models (CLMs) framework,
referred to as the Discriminative Response Map Fitting (DRMF) method. The method
shows impressive performance in the generic face fitting scenario. It is suitable for
handling dynamic backgrounds, significant amount of clutter/ occlusions and changing
illumination conditions. This module also supports the further development of a set of
visual methods for detecting human affective states including users’ positive and neg-
ative reactions to FROG robot and their overall level of interest and engagement when
interacting with the robot. These visual methods are to be developed for future deliver-
ables in FROG project.
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