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Chapter 1

Introduction

To operate efficiently and in a socially-acceptable manner, a robot in outdoor environ-
ments like the FROG robot needs to analyze people’s behavior in its environment. Since
visitors are seldom alone, it is also essential for the robot to be able to distinguish be-
tween individual visitors within the same group. A guide robot needs to be aware of the
context in which it interacts with people. Specifically, the robot needs to know which
visitor it is interacting with, what location the visitor is interested in, whether he / she
is engaged and what information or content the visitor wishes to see. In order to detect
the visitor’s interest level toward the content provided by the robot, we identify relevant
human behaviors including facial expressions and certain conversational cues.

In particular, this involves the detection / recognition of human visitors and the anal-
ysis of user behavior from head gestures as well as facial expression. These results
enable the robot to interpret the visitor’s behavior in terms of his or her level of in-
terest, emotion-related states like engagement, and social signals like agreement and
disagreement. Face recognition is also performed to allow the robot to know when a
new visitor comes to start interacting with it. Thus the robot would be able to adapt its
tour guide strategy based on the new visitor’s implicit affective feedback (e.g. attention
and interest). The challenges lie in the reliable detection of human behaviors in outdoor
environments with changing light conditions and frequent noise and occlusions. Inte-
grating such vision data will allow the identification of human activities as well as user
implicit feedback from affective signals. Identifying users’ engagement and interests
will significantly enhance the robot’s effectiveness and acceptance since it allows the
robot to exhibit “social awareness” and appropriately respond to relevant events. This
is an important step towards a feasible application of robots in outdoor guide scenarios.

The task in this deliverable aims further :

e to develop a method for human face recognition in the wild. As one of the most
important biometric techniques, face recognition has a clear advantage of being
natural and passive over other biometric techniques that require user cooperation
(i.e. fingerprint, iris). The image of the human face can have large intra-subject
variations (changes in the same individual), thus making it difficult to develop an
accurate recognition system in the wild. The system is supposed to be able to
identify / recognize an uncooperative face in uncontrolled environments without
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the notice of the subject. Face image can be captured from a distance without
touching the person being identified, and the identification does not require in-
teraction with the person. The non-intrusive nature of face recognition leads to
many challenging issues. In particular, a successful “in the wild” facial recogni-
tion method needs:

to handle face pose variations,
— to handle illumination changes,

— to handle partial occlusion of the face caused by accessories such as lenses,
sunglasses and scarves, facial hair (mustache, beard, long hair, etc.), and
changes in facial features due to aging,

— to solve the one sample per person problem in face recognition,

— to perform fully automatic face recognition.

So far, many face recognition algorithms have tried to deal with some of the above
problems in:

— well controlled environments,

— uncontrolled environments.

Face recognition in well controlled environments is relatively an easier task. thus
many approaches proposed in the past performed well under such conditions.
However, face recognition remains an unsolved problem under realistic conditions
for real applications. As a result of the aforementioned challenges, the problem of
accurate face recognition becomes much harder in uncontrolled environments. A
very limited number of methods tried to deal with these issues. The method used
in this task deals with all these challenges and performs automatic face recogni-
tion in uncontrolled (outdoor) environments.

e This task also aims: to develop a multi-cue visual method for detection of social
attitudes like agreeing and disagreeing. Detection is based on the state of the
art in cognitive sciences and based on morphological and temporal correlations
between relevant visual cues, including facial gestures like frowns and smiles as
well as head gestures like tilts and nods. To this aim, a method that deals with
noise, clutter and occlusions present in outdoor spaces is used in order to attain
agreement and disagreement detection based on automatically detected (rather
than manual annotated) behavioral cues. For this purpose, facial landmarks as
well as face pose were used. The method for facial landmark detection as well
as for face pose estimation was developed for FROG and it was presented in
deliverable 3.1 (FROG tracker).

These two main steps are presented in detail in the next chapters.



Chapter 2

Robust and Efficient Parametric
Automatic Face Recognition

The task of face recognition in the wild is performed by applying an image regis-
tration technique using two images of a person without prior information about this
person. More specifically, the core of the proposed algorithm is an image alignment
procedure using a piecewise affine motion model. Thus, we propose a new cost func-
tion for gradient ascend face recognition: the maximization of the correlation of image
gradient orientations. The use of this correlation coefficient has been motivated by the
recent success of FFT-based gradient correlation methods for the robust estimation of
translational displacements [48,21]. More specifically, we use a correlation coefficient
which takes the form of the sum of cosines of gradient orientation differences. The use
of gradient orientation differences is the key to the robustness of the proposed scheme.
As it is was shown in [48, 49], local orientation mismatches caused by outliers can be
well-described by a uniform distribution which, under a number of mild assumptions,
is canceled out by applying the cosine kernel. Thus, image regions corrupted by out-
liers result in approximately zero correlation and therefore do not bias the estimation
of the transformation parameters significantly. To maximize the gradient correlation
coefficient, we formulate and solve a continuous optimization problem.

2.1 Gradient-based correlation coefficient

Assume that we are given the image-based representations of two objects I; € R *™2 j =

1, 2. We define the complex representation which combines the magnitude and the ori-
entation of image gradients as G; = G, , + jG; ,, where j = \/( -1),G;, =F, L,
G;, = FyxI, and F,, F, are filters used to approximate the ideal differentiation op-
erator along the image horizontal and vertical direction respectively. We also denote by
‘P the set of indices corresponding to the image support and by g; = g; . + jgi, the
N —dimensional vectors obtained by writing G; in lexicographic ordering, where N is
the cardinality of P. The gradient correlation coefficient is defined as

s £ R{gl'gs} (2.1)
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where R{.} denotes the real part of a complex number and H denotes the conjugate
transpose [48]. Using r;(k) = \/gfx(k) + g7, (k) and ¢;(k) £ arctan :”;E:; , we have

5= Z r1(k)ra(k) cos|Ag(k)], (22)

keP

where Agp £ ¢, — ¢,.

The magnitudes r; in (2.2) suppress the contribution of areas of constant intensity
level which do not provide useful features for object alignment. Note, however, that the
use of gradient magnitude does not necessarily result in robust algorithms. For example,
the authors in [13] have shown that the gradient magnitude varies drastically with the
change in the direction of the light source.

The key to the robustness of our scheme is the correlation of gradient orientations
which takes the form of the sum of cosines of gradient orientation differences [48, 21].
To show this [48, 49], assume that there exists a subset P, C P corresponding to the
set of pixels corrupted by outliers, while P; denotes the image support that is outlier-
free (P = Py U P;). By using the normalized gradients g, = g;, + jg;,, Where
8i.(k) = gi.(k)/|gi(k)| and g; (k) = gi,(k)/|gi(k)|, so that r;(k) = 1 Vk, the value
of this gradient correlation coefficient in P, is

G = Z cos|A¢(k)]. (2.3)
kePo

To compute the value of q,, we note that in P, the images are visually dissimilar/unrelated,
so that locally do not match. It is therefore not unreasonable to assume that for any spa-
tial location k, the difference in gradient orientation A¢ (k) can take any value in the
range [0, 27) with equal probability. Thus, we can assume that A¢ is a realization of a
stationary random process u(t) which V¢ follows a uniform distribution U (0, 27). Given
this, it is not difficult to show that, under some rather mild assumptions, it holds

o= Y _ cos[Ag(k)] ~ 0. (2.4)
kEP,

Note that (a) in contrary to [40], no assumption about the structure of outliers is made
and (b) no actual knowledge of P is required. Based on (2.4), we can re-write (2.2) as
follows

s= Y cos[Ag(k)]+ ) cos[Ag(k)]

kePo kePy
= Z € - cos[Ad(k)] + Z 1 - cos[Ag(k)] (2.5)
keP, kePy

o T
~ 81 Qideal82,

where € — 0 and Q4. is the “ideal” weighting matrix defined above. Note that Q; 4.
in (2.5) is never calculated explicitly. We can write (2.5) only because outliers are ap-
proximately “canceled out” when the above kernel is used to measure image similarity.



This assumption has been shown to be valid using the Kolmogorov-Smirnoff test for
more than 70.000 pairs of visually unrelated images in [49]. As an example, in Fig. 2.1
(a)-(b), we assume that the scarf is visually unrelated to the face. P, here corresponds
to the part of the face occluded by the scarf defined by the red rectangle. Fig. 2.1 (c)
plots the distribution of A¢ in P,, while Fig. 2.1 (d) shows the histogram of uniformly
distributed samples obtained with Matlab’s rand function. As in [49], to verify that
Ag is uniformly distributed, we used the Kolmogorov-Smirnov test [39] to test the null
hypothesis Hy : Vk € P,, A¢(k) ~ UJ[0,2m). For a significance level of 0.01, the
null hypothesis was accepted with p-value equal to 0.254. Similarly, for the samples
obtained with Matlab’s rand function, the null hypothesis was accepted with p = 0.48.

Overall, unlike standard correlation (i.e. the inner product) of pixel intensities where
the contribution of outliers can be arbitrarily large, the effect of outliers is approximately
canceled out in P,. Corrupted regions result in approximately zero correlation and thus
do not bias the estimation of the transformation parameters.

5
angle (rad)

(d)

() (b)

Figure 2.1: (a)-(b) A pair of faces from the AR database. The region of interest is
defined by the blue rectangle. The corrupted region P, is defined by the red rectangle.
(c) The distribution of A¢ in P,,. (d) The distribution of samples (uniformly distributed)
obtained with Matlab’s rand function.

2.2 Gradient Orientation in Face Analysis

The use of gradient orientation as useful features for face analysis is by no means
proposed for the first time in this work. Examples of previous work can be found in
[30, 14, 13]. However, most prior work proposes gradient orientations as features for
achieving insensitivity in non-uniform illumination variations. On the contrary, what is
highlighted in [48, 49] as well as in this work is why gradient orientations can be used
for outlier-robust (for example occlusion-robust) face analysis.

Regarding face alignment, perhaps what is somewhat related to the our scheme is the
Active Appearance Model proposed in [14]. We underline two important differences
between our algorithm and the method of [14]. First, as [14] does employ the gradient
magnitude (even for normalization) for feature extraction, it is inevitably less robust to



outliers. Second, no attempt to exploit the relation between image gradients and pixel
intensities is made. More specifically, the gradient-based features in [14] are treated just
as pixel intensities which are then used for regression-based object alignment. On the
contrary, we make full use of the relation between image gradients and pixel intensities
to formulate and solve a continuous optimization problem. This results in a dramatic
performance improvement as Section 2.4 illustrates.

2.3 Robust and efficient object recognition

Our method deals with the most difficult face recognition problem when only one
sample is known per person. This problem is very common in FROG data since it is
very possible only a few images for some person to be available, while only a few of
them depict its face in frontal position without face occlusions or bad face illumination
thus these images can be used as a face template during the face recognition scenario. In
this case, the creation of subspace models is impossible. Having two images of a person,
one for training and one for testing, the correction of misalignment errors between them
must be performed by the cost function. In the next sub-sections this cost function will
be presented in detail.

Parametric object alignment methods assume that I and I, are related by a parametric
transformation, i.e.

I (xx) = L(W(xx;p)), Vk € P, (2.6)
where W (x;; p) is the parametric transformation with respect to the image coordinates
xp = [x1(k), x2(k)]T and p = [p(1),...,p(n)]T is the vector of the unknown param-

eters. This parametric transformation is based on the motion model used. There are
many motion models that can be used. In our case, we utilized two motion models, an
affine and a piecewise affine motion model. The unknown parameters p in the first case
are defined by the affine transformation itself. In the second case, motivated by AAMs,
a shape model is used. This shape model is typically learned by annotating /V fiducial
points on the object (e.g. a face) of training image I,. These points are said to define the
shape of each object. Next, Procrustes analysis is applied to remove similarity transfor-
mations from the original shapes. Finally, PCA is applied on the similarity-free shapes
s; = [w1,y1, %2, Y2, - - Tn, yn|. The resulting model {®g o, Ps € R*N*P} can be used
to represent a test shape s, as

S, = ®50+ Psp, p=PL(s, — Psyp). (2.7)

The eigenvectors of ® g represent pose, expression and identity variation. For each of the
images I; and I, the IV facial landmarks are detected by using an automatic procedure
for facial landmark detection. Then, the alignment procedure is driven by these auto-
matic detected facial landmarks using piecewise affine warp. The image Io(W (xy; p))
is computed by backwards warping the input image I, with the warp W (xy; p), i.e.
for each pixel x in the base mesh ®5, we compute W (x;p) and sample (bilinearly
interpolate) the image I, at that location.



Next, p is estimated by minimizing an objective function which is typically the ¢
norm of the difference E = I; — I,. The minimization is performed in an iterative
fashion after making a first or second order Taylor approximation to either I; or I. It is
obvious that above image difference becomes an image alignment problem.

2.3.1 The quantity maximized

In this section, we introduce the maximization of the correlation of image gradient
orientations as a new cost function for robust gradient descent face alignment. In par-
ticular, to estimate p, we wish to maximize

q= Z cos[A¢(k)]. (2.8)

keP

By using the normalized gradients g;, simple calculations show that (2.8) is equivalent
to

keP
Note, however, that a first order Taylor expansion of g; or g» with respect to Ap yields
a linear function of Ap which is maximized as Ap — oo. To alleviate this problem
without resorting to the second order Taylor expansion as in [50], we follow an approach
similar to [19]. To proceed, we note that as ||g2(k)||» = 1, Vk € P, the cost function is

exactly equal to
_ 2kep 810(K)B2:(F) + 814 (F)Ba,y ()
V  ep 8 (k) + 83, (k)

but if we linearize g» in the above expression, the denominator will not be equal to 1
and ¢ will become a non-linear function of Ap. Finally, using vector notation, our cost
function becomes

q , (2.10)

~T ~ ~T =
e+
_ _BiaB20 ¥ 81,82y (2.11)

q =
\/g%jxgzz + gngQ,y

To maximize g with respect to p, we first make the dependence of g (k) on p explicit
by writing g»[p|(k). Then, we maximize iteratively by assuming that the current esti-
mate of p is known and by looking for an increment Ap which maximizes our objective
function in (2.11) with respect to Ap.

2.3.2 The forward-additive gradient correlation algorithm

In this section, we describe how to maximize our cost function in (2.11) using the
forward-additive maximization procedure. In this framework [35, 6], at each iteration,
we maximize (2.11) with respect to Ap where g «— go[p + Ap]. Once we obtain
Ap, we update the parameter vector in an additive fashion p «— p + Ap and use this
new value of p to obtain the updated warped image I,(W (x; p)).



We start by noting that g»[p](k) is the complex gradient of I,(W (x;p)) with re-
spect to the original coordinate system evaluated at x = x;. This gradient is different
from the gradient of I, calculated at the first iteration and then evaluated at W (x,; p),
which, for convenience, we will denote by hy[p](k). Thatis, hy[p] = hy ,[p] + jhs,[p]
is obtained by writing G, (W (x;p)) + jG2,(W(x;p)) in lexicographic ordering,
where Gy = Gg, + jGo, is assumed to be computed at the first iteration. In a
similar fashion, we denote by h, .. [p], hs ,,[p] and h, ., [p], the vectors obtained by
writing in lexicographic ordering the second partial derivatives of I, G2, G2,y and
G .y, computed at the first iteration and, then, evaluated at W (x; p). Let us also write

W(x;p) = [wi(x;p), wa(x; p)]”, so that the matrix derivative 2 with respect to a
vector a = [a(1),...,a(m)]” depends on the motion model used. The derivative 2 is
given as follows:
e in case of affine motion model the derivative is given by
aw 6w1 . 8W1
— = | & B | (2.12)
da da(l) " Da(m)

e in case of a piecewise affine motion model, the calculation and implementation of
the derivative can be found in [37].

By definition we have

2[pl(k) 2 [g2.[pl(k) go2,[Pl(K)]
O,(W(x;p))
ox

X=X
ow
0x

= Vwl[p](k) ; (2.13)

X=X

where VwI2[p](k) £ [hy.[p](k) hay,[p](k)]. By applying the chain rule and noticing

(
that VW%—V):’ = 0, we also have
T
oW
ox _—

9g2,z[p](k)
[ Oga 1K) ]
op
|: hQ,mx[pKk) hQ,my[p](k) :| aﬂ
hs . [p)(K) hoyy[p](k) | Op

X

(2.14)

We assume that the current estimate of p is known. The key point to make derivations
tractable is to recall that g, ,[p](k) = cos ¢,[p](k) and &> ,[p](k) = sin ¢, [p](k) where

g2,(P] (k)

g2 lp)(R) @13

é,[pl(k) = arctan



By performing a first order Taylor expansion on g, ,[p + Ap](k), we get

0cos dulpl(h)

g2.[p + Ap|(k) =~ cos ¢, [p|(k) + op p. (2.16)
By repeatedly applying the chain rule, we get
0 k . .
0cos®alpllt) _ _ o g, o) k)slpl k). (2.17)

op

where j[p](k) is a 1 x n vector given by

. Og2y[PI(K) 982,2[p](k)
il — SR MOy

\/8a[Pl(k) + g3, [Pl (k)

Using vector notation, we can write

€2.(P + Ap] = cos ¢,[p] — S4[p] © J[p]Ap, (2.19)

where S, [p] is the NV xn matrix whose k—th row has n elements all equal to sin ¢, [p](k),
J[p] is the N x n Jacobian matrix whose k—th row has n elements corresponding to
j[p](k) and ® denotes the Hadamard product. Very similarly, we can derive

€24[P + Ap] ~ sin ¢, [p] + Cy4[p] © J[p]Ap, (2.20)

where Cy|p] is the N xn matrix whose k—th row has n elements all equal to cos ¢, [p] (k).

Let us denote by Sa4[p] the N x 1 vector whose k—th element is equal to sin(¢, (k) —
¢, [p|(k)). Then, by plugging (2.19) and (2.20) into (2.11), and after some calculations,
our cost function becomes

Ip + S£¢JAp

Ap) = ,
a(4p) VN + ApTJTJAp

221)

where g, = cos @] cos ¢, + sin @] sin ¢, is the correlation of gradient orientations
between I, and Io(W (x; p)), and we have dropped the dependence of the quantities on
p for notational simplicity. Finally, the maximization of (2.21) with respect to Ap can
be obtained by applying the results of [19]. In particular, the maximum value is attained
for

Ap = A(JTT) ISy, (2.22)

where A = % and ¢ = ¢, /N denotes the normalized correlation (such that |g| < 1) Thus,
A has a very intuitive interpretation. As ¢ is small (large) in the first (last) iterations, a
large (small) )\ is used as a weight in (2.22).



2.3.3 The inverse-compositional gradient correlation algorithm

In this section, we show how to maximize our cost function in (2.11) using the
inverse-compositional maximization procedure. In this framework [5, 6], a change of
variables is made to switch the roles of I and I, and the updated warp is obtained in a
compositional (rather than additive) fashion. Thus, our cost function becomes

- (82.2[P)" (81.0[AP]) + (82,4[P))" (81,4[AP)
V (&1:[AP])T (&1.[AP]) + (&1,[AP])7(&1,[AP])

with respect to Ap and, at each iteration, I, is updated using W (x; p) «— W(x;p) o
(W (x; Ap))~!, where o denotes composition.

(2.23)

Similarly to [6], we assume that W(x;0) = x. This, in turn, implies g;[Ap] =
h; [Ap] which greatly simplifies the derivations. As before, we perform a Taylor ap-
proximation to g; ,[p], but this time around zero. This gives

81..[Ap] ~ cos ¢,[0] — Sy[0] © J[0]Ap, (2.24)

where S,[0] is the NV xn matrix whose k—th row has n elements all equal to sin ¢, [0](k)
and J[0] is the N x n Jacobian matrix whose k—th row has n elements corresponding
to the 1 x n vector

ol  CEHOD I - sng oy

/83 [00(k) + 2, 0] (k)

and

[ Og1.:[0](k) ] B [ 81.0:[0](k)  &1.04[0](k) } oW

. oW
@%@@ 21,4:0](k) €1,,[0](k) | Op

p=0

Similarly, for g, ,[Ap], we get
81,4 [Ap] & sin ¢, [0] + C4[0] © J[0]Ap, (2.26)

where C,[0] is the N xn matrix whose k—th row has n elements all equal to cos ¢, [0] (k).
Notice that all terms in (2.24) and (2.26) do not depend on p and, thus, are pre-computed
and constant across iterations.

Let us denote by Sa,[p] the N x 1 vector whose k—th element is equal to sin(¢,[p](k)—
¢,(k)). Then, by dropping the dependence of the above quantities on p and 0, our ob-
jective function will be again given by (2.21) while the optimum Ap will be given by
(2.22).
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Figure 2.2: Examples of images used in our experiments (prior to the application of an
affine transformation). The blue rectangle defines the region of interest.

Methods Number of Real image | Transformation Illumination Occlusion AWGN | Compared
image pairs pair Affine/ with
considered Homography

[6] 4 (Takeo+3) No Yes/Yes No No Yes [6]

[3] 6 (Takeo) No Yes/No No Yes (synthetic) No [6,3]
[16] 3 Yes Yes/No Yes (natural) No No [6]
[19] 1 (Takeo) No Yes/No Yes (synthetic) No Yes [6,4]
2] NA (Multi-Pie [26]) Yes Yes/No Yes (natural) No No [6]
[38] 11 No Yes/No Yes (synthetic) No Yes [6]
Ours 182 (Takeo + Yale +AR) Yes Yes/No Yes (natural) Yes (real) Yes [6,3,19,2]

Table 2.1: Comparison between the experimental settings reported in object alignment
papers following the evaluation framework of [6].

24 Experimental results

Let us define two variations of our framework for face alignment coined as GradientCorr-
FA and GradientCorr-IC. We have conducted two different sets of experiments. Since a
face alignment step is performed during the face recognition procedure, face alignment
experiments are performed separately from the experiments for face recognition. Both
method variations were used in the first set of experiments, while, after judged the re-
sults of these experiments, GradientCorr-IC were used in the second set of experiments.
The difference between these two sets of experiments is the motion model used. More
specifically, an affine motion model was used for face alignment experiments, while a
piecewise affine motion model was used for the face recognition experiments. These
experiments are very important in order to show that our framework does not depend on
the motion model used. Below, all these experiments are presented in detail.

24.1 Face alignment experiments

We assessed the performance of the image alignment step, used in our face recog-
nition method, using the performance evaluation framework proposed in [6] which has
now become the standard evaluation procedure [19, 16, 2, 38]. We present results and
comparison with previous work for very challenging alignment cases which have not
been previously examined. Table 2.1 presents a comparison between our experiments
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and the ones reported in object alignment papers which also adopt the evaluation frame-
work of [6]. In addition to the standard “Takeo” experiment, we considered, for the
first time (to the best of our knowledge), the problem of face alignment in the presence
of real occlusions and non-uniform illumination changes using hundreds of real faces
taken from the AR [36] and Yale B [23] databases.

The evaluation in [6] is as follows. We selected a region of interest and three canon-
ical points in this region. We perturbed these points using Gaussian noise of standard
deviation ¢ and computed the initial RMS error between the canonical and perturbed
points. Using the affine warp that the original and perturbed points defined, we gen-
erated the affine distorted image. Given a warp estimate, we computed the destination
of the three canonical points and, then, the final RMS error between the estimated and
correct locations. We used the average rate of convergence for a fixed o and the average
frequency of convergence for o = [1, 10] as the performance evaluation measures. An
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Figure 2.4: Average Frequency of Convergence vs Point Standard Deviation for Yale
and AR databases. No smoothing was used. (a) Yale (b) AR-Occlusion (¢) AR-
Occlusion+illumination. LK-IC: black-{. ECC-IC: yellow-A. IRLS-IC: cyan-x.
GaborFourier-IC: red-*. GradientImages-IC: green-A\. GradientCorr-IC: blue-[J.

algorithm was considered to have converged if the final RMS point error was less than
ny pixels after 30 iterations. We obtained these averages using, for each o, ny randomly
generated warps.

Experiments using the Takeo image

We started by reproducing to some extend the experimental setting of [6] using the
Takeo image. We used n; = 1 pixel and, for each o, no = 1000 randomly generated
warps. We assessed the performance of the forward additive and inverse compositional
versions of our algorithm and the LK algorithm. We considered 3 cases. The first case
was with no Gaussian smoothing prior to the calculation of image derivatives and no
AWGN (Additive White Gaussian Noise). The second case was with smoothing but no
AWGN. Finally, the third case was with both smoothing and AWGN of variance equal
to 10 added to both the template and the target image. Fig. 2.3 shows the obtained
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average frequency of convergence.

As Fig. 2.3 (a) shows, for this experiment, the LK algorithms outperform the pro-
posed methods. This is not unreasonable, as the affine distorted image was generated
directly from the original image. In this case, there are no outliers, and as our algorithms
remove some amount of information (most importantly the gradient magnitude), they
inevitably perform worse. As Fig. 2.3 (b) illustrates, Gaussian smoothing improves the
performance of all methods by providing a larger region of attraction. The performance
gap between the LK and the proposed methods is now significantly smaller. Finally, as
Fig. 2.3 (c) shows, if smoothing is used, none of the methods is affected too much by
the AWGN even for a large noise variance (In fact, the performance of the LK methods
is not affected at all). However, as next section shows, smoothing will not increase the
robustness of methods which are not designed to be robust.



Experiments on the Yale and AR databases

In this section, we present our performance evaluation results obtained by using real
image pairs (manually aligned), taken from the Yale B [23] and AR databases [36]. Our
target was to assess performance in the presence of non-uniform illumination changes
and occlusions. We used 100 different face pairs taken from the Yale database as fol-
lows. For each of the 10 subjects of the database we selected 1 template and 10 test
images corrupted by extreme illumination changes. We also used 81 different face pairs
taken from the AR database as follows. We selected 27 out of 31 subjects from the
“dbf1” folder (4 subjects were discarded due to significant pose variation). For each
subject, we selected 1 template image and 3 test images with sunglasses. Fig. 2.2 shows
examples of images used in our experiments.

We used the average frequency of convergence for o = [1,10] as the performance
evaluation measure. We used n; = 3 pixels and, for each o, no, = 100 randomly
generated warps. Thus, for each o, we used a total of 100 x 100 and 81 x 100 warps for
Yale and AR respectively.

We assessed the performance of the inverse compositional versions of our algorithm
(GradientCorr-IC), the LK algorithm (LK-IC) [6], the enhanced correlation (ECC-1C)
algorithm [19], the iteratively re-weighted least squares algorithm (IRLS-IC) [3], and
the Gabor-Fourier LK algorithm (GaborFourier-IC) recently proposed in [2]. The last
two methods as well the mutual-information LK [16] (not considered here) are pre-
viously proposed robust methods. The implementations of the LK-IC and IRLS-IC
algorithms are kindly provided by the authors. We implemented ECC-IC based on the
forward additive implementation of ECC which is also kindly provided by the corre-
sponding authors. Finally, we implemented GaborFourier-IC based on the implementa-
tion of LK-IC.

Additionally, based on the discussion in Section 2.2, we propose a new method: we
used the orientation-based features of [14] and replaced regression with the inverse com-
positional algorithm. As gradients are treated exactly the same as intensities, we call this
algorithm GradientImages-IC. We included this algorithm in our experiments to illus-
trate the performance improvement achieved by our scheme which solves a continuous
optimization problem based on the relation between gradients and intensities.

With the exception of GaborFourier-IC, for all methods, we considered two cases.
The first case was with no Gaussian smoothing while the second one was with smooth-
ing prior to the calculation of the image derivatives. We did not use smoothing for
GaborFourier-IC as this is already incorporated in the method.

Figs. 2.4 and 2.5 show the average frequency of convergence for all face pairs and
algorithms considered for the cases of “No Smoothing” and “Smoothing” respectively.



Overall, the proposed GradientCorr-IC largely outperformed all other methods resulting
in the most robust and stable performance. The performance improvement compared to
GradientImages-IC is also more than evident. In particular, for large o, GradientCorr-
IC converged approximately 30-40% more frequently than GradientImages-IC. As Fig.
2.5 shows, Gaussian smoothing improved the performance of GradientCorr-IC and
GradientImages-IC only. IRLS-IC seems to have worked well in the presence of oc-
clusions but failed to converge when illumination changes were present. Surprisingly,
Gaussian smoothing reduced the algorithm’s performance. Although the results of [2]
demonstrate that GaborFourier-IC is much more robust than the original LK-IC algo-
rithm, our results show that this algorithm was also not able to cope with the extreme
illumination conditions and occlusions considered in our experiments. Finally, the LK-
IC and ECC-IC algorithms are not robust and, not too surprisingly, diverged for almost
all face pairs considered.

Computational complexity

A simple inspection of our algorithms shows that the most computationally expensive
step is the calculation of J7J in (2.21) which requires O(n?N) operations. The cost of
all other steps is at most O(n/N) (since N > n). In the inverse compositional maxi-
mization procedure, J7J and its inverse is pre-computed and, therefore, the complexity
per iteration is O(n/N). Finally, an un-optimized MATLAB version of our algorithm
takes about 0.03-0.04 seconds per iteration while the original inverse compositional al-
gorithm takes about 0.02-0.03 seconds per iteration. We note that an optimized version
of the original inverse compositional algorithm, as the core part of Active Appearance
Model fitting, has been shown to track faces faster than 200 fps [25].

2.4.2 Face recognition experiments

Face recognition experiments were conducted on three well-known databases: FRGC
[41], MULTI-PIE [26] and FERET [42, 43]. Note that face recognition using only one
training sample per person is a difficult problem for many methods based on subspace
learning proposed in the past. In order to asses the performance of GradientCorr-I1C, it
is compared to the state-of-the-art method [12] described before.

Both methods require the detection of facial landmarks. To tackle the problem of
recognising faces under real conditions when only a single sample per classes is avail-
able, an automatic state-of-the-art method for facial landmark detection was used [53].
Thus, the fiducial points in both the training and the testing samples were detected in an
automatic way.

The method [12] uses several high dimensional features extracted on facial landmarks
(salient points) in multiple scales. In total, 27 landmarks of the inner face were selected
as proposed by the authors. As features we used: Histogram of Oriented Gradients
(HOQG) [15], Scale-invariant feature transform (SIFT) [34], Local Binary Patterns (LBP)



[1] as well as the combination of the three of them. For simplicity reasons let us define us
HDF-HOG, HDF-SIFT, HDF-LBP and HDF-Fusion the four different configurations of
this method used in our experiments. As mentioned before for the proposed method, the
piecewise affine motion motion is driven by N fiducial points on the face. Although the
prior shape model is typically learned by manually annotation of these points, during the
face recognition under real conditions this is not possible. Furthermore, N=68 fiducial
points in total were used, as depicted in Figure 2.6. Figure 2.7 depicts examples of
automatic detected facial landmarks using images used in our experiments. As it is
depicted in this figure, automatic detection of facial landmarks produces in some cases
inaccurate results, especially in cases of facial expressions. This problem is realistic in
real face recognition scenarios, thus it has to be treated in a special way by an automatic
face recognition method. All the face recognition experiments are described in detail in
the next sub-sections.
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Figure 2.6: The 68 fiducial face points mark-up used to create our shape model.

Experiments on FRGC database

The FRGC v2 database contains 4007 records of 466 persons. The records contain
various facial expressions (e.g., happiness, surprise), and subjects are 57% male and
43% female, with the following age distribution: 65% 18-22 years old, 18% 23-27 and
17% 28 years or over. In the FRGC three masks are defined over the square similar-
ity matrix which holds the similarity values between facial records. A mask selects a
subset of the records to be used as the gallery set and another subset to be used as the
probe set. In the verification scenario, each probe is compared to one gallery set and
the result is compared against a threshold, which is one-to-one matching. The results
are summarized using Receiver Operating Characteristic (ROC) curves. Each mask is
used to perform a different verification experiment, thus producing three different ROC
curves, which will be referred to as ROCI, II and III. In ROC I all the data are within



Figure 2.7: Examples of automatic detected facial landmarks using images used in our
experiments. In the first row the facial landmarks are well detected. Second row depicts
cases where the landmarks are not well detected, thus this problem has to be treated in
a special way by an automatic face recognition method.

semesters, in ROC II they are within a year, while in ROC III the samples are between
semesters. These experiments are of increasing difficulty.

In our experiment we used the most challenging third verification scenario and mea-
sured the verification rate and the false acceptance rate (FAR) and summarize the results
on ROC curves. For FAR=0%, GradientCorr-IC achieves verification rate of around
79.50%, while the best configuration of the method in [12] for this database, HDF-
HOG, achieves verification rate of around 75.50%. This can be seen in Table 2.2. For
FAR=0.1%, GradientCorr-IC achieves verification rate of around 96.50%, while HDF-
HOG achieves verification rate of around 94.80%. For the standard protocol test ROC
IIT mask of FRGC v2, the results achieved by the tested methods are summarized in
Figure 2.8.

Experiments on FERET database

This collection of images consists of hard recognition cases that have proven difficult
for most face recognition algorithms previously tested on the FERET database. The dif-
ficulty posed by this data set appears to stem from the fact that the images were taken at
different times, at different locations, and under different imaging conditions. We car-
ried out single-sample-per-class face recognition experiments on the FERET database.
The evaluation methodology requires that the training must be performed using the FA




Table 2.2: Automatic face verification experiment in FRGC v2 database using the most
challenging third verification scenario for FAR=0%.

Recognition accuracy
Methods FAR=0%
HDF-Fusion 73.8411%
HDF-HOG 75.5440%
HDF-SIFT 75.3548%
HDF-LBP 73.8411%
GradientCorr-1C 79.4702 %
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Figure 2.8: ROC curves based on the experiment in FRGC database.

set which contains one frontal view per subject and in total 1196 subjects. No other data
set was used for training. The testing sets include the FB, Dupl and Dupll data sets.
Since current techniques achieve almost 100% recognition performance on FB, we used
only Dup I and II in our experiments. Dupl and Dupll probe sets contain 727 and 234
test images, respectively, captured significantly later than FA. These data sets are very
challenging due to significant appearance changes of the individual subjects caused by
aging, facial expressions, glasses, hair, moustache, non-uniform illumination variations
and slight changes in pose. Table 2.3 summarizes our results.



Table 2.3: Automatic face recognition experiment in FERET database.

Recognition accuracy
Methods

(FA, Dupl) | (FA, Dupll)

HDF-Fusion 62.6359% | 56.1404%
HDF-HOG 72.4185% | 64.9123%
HDF-SIFT 63.3152% | 51.3158%
HDF-LBP 62.5000% | 56.1404%
GradientCorr-1C 759511% | 60.5263%

Experiments on MultiPIE database

We also perform extensive experiments on the Multi-PIE dataset to verify the gen-
eralization ability of our approach. The Multi-PIE dataset contains face images from
337 subjects, imaged under 15 view points and 19 illumination conditions in 4 record-
ing sessions. Moreover, Multi-PIE is collected under a controlled setting systematically
simulating the effects of pose, illumination, and expression. In contrary to the protocols
used in the past by the state of the art methods, we decide to perform really challenging
experiments by using only one picture per person under illumination 05 as our training
set. We have conducted two sets of recognition experiments. In the first set of experi-
ments, we have tested the methods under different face illumination conditions. More
specifically, the testing sets consist of:

e one frontal photo per person under illumination 01 (Experiment 1).

e one frontal photo per person under illumination 13 (Experiment 2).

one frontal photo per person under illumination 19 (Experiment 3).

one frontal photo per person under illumination 00 (Experiment 4).

one frontal photo per person under illumination 09 (Experiment 5).

e one frontal photo per person under illumination 15 (Experiment 6).

The face recognition accuracy for the first set of experiments is reported in table 2.4.

In the second set of experiments, we have tested the methods under different facial
expressions. More specifically, the testing sets consist of:

e one smile frontal photo per person taken from session 1 under illumination 15
(Experiment 7).

e one squint frontal photo per person taken from session 2 under illumination 15
(Experiment 8).



Table 2.4: Face recognition experiments in MultiPIE database under different face illu-

mination conditions.

Recognition accuracy
Methods Experiment id
1 | 2 | 3 | 4 5 | 6
HDF-Fusion 46.2908% | 16.9139% | 59.9407% | 61.7211% | 39.4659% | 99.1098%
HDF-HOG 97.3294% | 70.9199% | 99.1098 % 100% 95.5490% 100%
HDF-SIFT 82.7893% | 35.0148% | 96.4392% | 96.7359% | 85.7567% 100 %
HDF-LBP 45.9941% | 16.6172% | 59.9407% | 61.7211% | 39.4659% | 99.1098%
GradientCorr-IC 95.2522% | 65.5786% | 98.8131% | 99.4065% | 96.7359 % 100 %

e one smile frontal photo per person taken from session 3 under illumination 15

(Experiment 9).

e one disgust frontal photo per person taken from session 3 under illumination 15

(Experiment 10)

The face recognition accuracy for the second set of experiments is reported in table 2.5.

Table 2.5: Face recognition experiments in MultiPIE database under different facial

expressions.
Recognition accuracy
Methods Experiment id
7 | 8 | 9 | 10

HDF-Fusion 35.7430% | 20.6897% | 14.7826% | 13.9130%
HDF-HOG 74.6988% | 48.7685% | 38.6957% | 35.6522%
HDF-SIFT 79.5181% | 53.2020% | 45.2174% | 41.7391%
HDF-LBP 35.7430% | 20.6897% | 14.7826% | 13.9130%
GradientCorr-IC 81.9277% | 83.2512% | 46.5217% | 61.3043 %

Based on the experiments in Multi-PIE database it is obvious that GradientCorr-IC
performs significantly better than the method in [12] especially when facial expressions
used as testing sets. The reason is that that GradientCorr-IC can overcome better the
negative effect of working with automatic detected facial landmarks especially in case

of facial expressions.



Experiments on FROG data

In FROG project, the robot only has to remember a limited number of faces belong-
ing to the visitors interacted with it since the beginning of the tour. These faces are
stored in a non-persistent in-memory database called the gallery. For each frame, the
robot compares every visible human face with every face stored in this gallery. For our
face recognition experiments in FROG data, we have collected by about 4 hours of real
FROG video recordings. In each video, up to 140 different persons were depicted. Our
face recognition experiments show that the 99.8% of the human faces can be correctly
recognised, which means that our method performs extremely well in outdoor environ-
ments. Figure 2.9 depicts some real visual FROG face recognition results.
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Figure 2.9: Real visual FROG face recognition results.



Chapter 3

Spontaneous Agreement and
Disagreement Recognition

3.1 Agreement and Disagreement

3.1.1 Definitions and Associated Cues

Distinguishing between different kinds of agreement and disagreement is difficult, mainly
because of the lack of a widely accepted definition of (dis)agreement [10]. We can dis-
tinguish among at least three ways one could express (dis)agreement with:

e Direct Speaker’s (Dis)Agreement: A speaker directly expresses his/her (dis)agreement,
e.g. “I (dis)agree with you”.

e Indirect Speaker’s (Dis)Agreement: A speaker does not explicitly state her
(dis)agreement, but expresses an opinion that is congruent (agreement) or con-
tradictory (disagreement) to an opinion that was expressed earlier in the conver-
sation.

e Nonverbal Listener’s (Dis)Agreement: A listener nonverbally expresses her
(dis)agreement to an opinion that is currently or was just expressed. This could
be via auditory cues like “mm hmm” or visual cues like a head nod or a smile.

It is important to mention at this point that in spontaneous direct and indirect speaker’s
(dis)agreement, the speaker also exhibits nonverbal behavior which could perhaps be
different than the one exhibited during the nonverbal listener’s (dis)agreement.

Tables 3.1 and 3.2 present a full list of the nonverbal cues that can be displayed
during (dis)agreement [10]. The most prevalent and straightforward cues seem to be the
Head Nod and the Head Shake for agreement and disagreement respectively, with nods
intuitively conveying affirmation and shakes negation. However, simply the presence of
these or any of the other cues alone cannot be discriminative enough, since they could
have many other interpretations, as studied by Poggi et al. [44] and Kendon [32].
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[CUE | KIND |

Head Nod Head Gesture
Listener Smile (AU12, AU13) Facial Action
Eyebrow Raise (AU1+AU?2)+Head Nod | Facial Action, Head Gesture
AU1 + AU2 + Smile (AU12, AU13) Facial Action
Sideways Leaning Body Posture
Laughter Audiovisual Cue
Mimicry Second—order Cue

Table 3.1: Cues of Agreement. For relevant descriptions of AUs, see FACS [17].

3.1.2 Related Work on Automatic Recognition

There is no work, to the best of our knowledge, that has attempted (dis)agreement clas-
sification on audiovisual spontaneous data. Table 3.3 summarizes the existing systems
that have attempted classification of agreement and/or disagreement in one way or an-
other. However, none of these systems is directly comparable with ours.

Hillard et al. [29] attempted speaker (dis)agreement classification on pre—segmented
‘spurts’, speech segments by one speaker with pauses not greater than 500ms. The au-
thors used a combination of word—based and prosodic cues to classify each spurt as
‘positive—agreement’, ‘negative—disagreement’, ‘backchannel’, or ‘other’. Most of the
results reported included word—based cues, however an overall classification accuracy
of 62% was reported for a 17% confusion rate between the agreement and disagreement
classes. Similar works by Galley et al. [22] and Hahn et al. [27] also deal with clas-
sifying spurts as disagreement and agreement, with [22] also dealing with finding the
addressee of the action. Germesin and Wilson [24] also deal with these issues. How-
ever, the features used by these works included lexical, structural and durational cues
and are not comparable with other systems based on non—verbal cues.

The first such system is that by el Kaliouby and Robinson [18], which attempted
(dis)agreement classification of acted behavioural displays based on head and facial
movements. They used 6 classes: ‘agreeing’, ‘disagreeing’, ‘concentrating’, ‘inter-
ested’, ‘thinking’, and ‘unsure’. They tracked 25 fiducial facial points, out of which they
extrapolated rigid head motion (yaw, pitch, and roll), and facial action units (eyebrow
raise, lip pull, lip pucker), but also utilized appearance—based features to summarise
mouth actions (mouth stretch, jaw drop, and lips parting). They used Hidden Markov
Models (HMMs) to detect each head and facial action, and a Dynamic Bayesian Net-
work (DBN) per class was trained to perform the higher—level inference of each of the
‘mental states’ mentioned above, allowing for the co—occurrence of states.

Sheerman—Chase et al. [46] are, to our knowledge, the only research group who
have attempted recognition of agreement based on non—verbal cues in spontaneous data.
However, they did not include disagreement as a class, because of the lack of data. They
instead distinguished between ‘thinking’, ‘understanding’, ‘agreeing’ and ‘questioning’.
Their spontaneous data was obtained by capturing the four 12—minute dyadic conversa-
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Head Shake Head Gesture
Head Roll Head Gesture
Cut Off Head Gesture
Clenched Fist Hand Action
Forefinger Raise Hand Action
Forefinger Wag Hand Action
Hand Chop Hand Action
Hand Cross Hand Action
Hand Wag Hand Action

Hands Scissor

Hand Action

Ironic Smile/Smirking [AU12 L/R(+AU14)]
Barely noticeable lip—clenching (AU23, AU24)
Cheek Crease (AU14)

Lowered Eyebrow/Frowning (AU4)

Lip Pucker (AU18)

Slightly Parted Lips (AU25)

Mouth Movement (AU25/AU26)

Facial Action
Facial Action
Facial Action
Facial Action
Facial Action
Facial Action
Facial Action

Nose Flare (AU38) Facial Action
Nose Twist (AU9 L/R, AU10 L/R, AU11 L/R) Facial Action
Tongue Show (AU19) Facial Action
Suddenly Narrowed/Slitted Eyes (fast AU7) Facial Action
Eye Roll Facial Action/Gaze
Gaze Aversion Gaze

Arm Folding Body Posture
Large Body Shift Body Action
Leg Clamp Body Posture
Head/Chin Support on Hand Body/Head Posture
Neck Clamp Hand/Head Action
Head Scratch Head/Hand Action
Self-manipulation Hand/Facial Action
Feet Pointing Away Feet Posture
Sighing Auditory Cue
Throat Clearing Auditory Cue
Delays Auditory Cue
Utterance Length Auditory Cue
Interruption Auditory Cue

Table 3.2: Cues for Disagreement. For relevant descriptions of AUs, see FACS [17]




tions of 6 males and 2 females. 21 annotators rated the clips with each clip getting on
average around 4 ratings that were combined to obtain the ground truth label. For the
automatic recognition, they used no auditory features and the tracking of 46 fiducial fa-
cial points was used. The output of the tracker was then processed to obtain a number of
static and dynamic features to be used for classification. Principal Component Analysis
(PCA) was performed on the tracked points in each video frame, and the PCA eigenval-
ues were used as features. Similarly to el Kaliouby and Robinson [18], the head yaw,
pitch and roll, the eyebrow raise, lip pucker and lip parting were calculated as functions
of these tracked facial points. Gaze was also estimated in a similar fashion —the eye
pupils were among the points tracked.

3.2 Hidden conditional random fields (HCRFSs) for Mul-
timodal Gesture Recognition

We wish to learn a mapping of observations x to class labels y € Y, where x is a vector
of m local observations, x = {x1, Za, ..., Z,}, and each local observation z; is repre-
sented by a feature vector ¢(z;) € R¢. An HCRF models the conditional probability of
a class label given an observation sequence by:

U (y,h,x;0
2n€ ( :

e VT

where h = {hqy,ho, ..., h,}, each h; € H captures certain underlying structure
of each class and H is the set of hidden states in the model. The potential function
U(y,h,x;0) € R is an energy function, parameterized by 6, which measures the com-
patibility between a label, a sequence of observations and a configuration of the hidden
states. The following objective function is used in training the parameters:

(3.1)

P(y|x,6) = P(yh|x0) =

1
L(#) =D Jlog P(y; | 7:,0) — 55 10II* 32)

The first term in Eq. 3.2 is the log-likelihood of the data. The second term is the
log of a Gaussian prior with variance 02, i.e., P(f) ~ exp (5%5||6]|?). We use gradient
ascent to search for the optimal parameter values, 0* = arg maxy L(6), under this crite-
rion. For our experiments we used a Quasi-Newton optimization technique to minimize
the negative logliklihood of the data.

Hidden conditional random fields (HCRFs) —discriminative models that contain
hidden states— are well—suited to the problem of multimodal cue modeling for agree-
ment/disagreement recognition. Quattoni [45] presented and used HCRFs to capture the
spatial dependencies between hidden object parts. Wang et al. [52] used them to capture
temporal dependencies across frames and recognize different gesture classes. They did
so successfully by learning a state distribution among the different gesture classes in a
discriminative manner, allowing them to not only uncover the distinctive configurations
that uniquely identifies each class, but also to learn a shared common structure among



Method

Features

Classifier

Data

Spontaneous

Method in [29]

Verbal,

pause,
fundamental,
frequency(FO0),
duration

Decision Tree

ICSI [31]

N

Method in [22]

Verbal

Bayesian Network

ICSI [31]

Method in [18]

head nod,
head shake,
head turn,
head tilt,
AU1,AU2,
AU12, AU16,
AU19, AU20,
AU25, AU26,
AU27

HMM, DBN

Mind Reading
DVD [7]

Method in [27]

Verbal

Contrast Classifier,
SVM

ICSI [31]

Method in [46]

head yaw,
head pitch,
head roll,
AU1, AU2,
AU12,AU18,
AU20, AU25,
Gaze,

head pose

AdaBoost

own

Method in [24]

Verbal,
pitch,
energy,
duration,
pauses,
speech rate

Decision Tree,
CRF

AMI [11]

Table 3.3: Summary of the existing systems that have attempted (dis)agreement classi-

fication.




(c) Hand Wag (d) Hands Scissors

Figure 3.1: Some of the gestures used as cues for the experiments.

the classes. Moreover, as a discriminative model, HCRFs require a fewer number of ob-
servations than a generative model like a Hidden—Markov Model (HMM). These were
all qualities that prompted us to select HCRFs as a model to experiment with in our
attempt to recognize (dis)agreement.

Finally, another very important quality is the ability to easily investigate an HCRF
model and find out what pieces of information it learned to be most important for the
task at hand. This can easily be done by obtaining the weights learned for each of
its features and ranking them. In our experiments, the features we used were the actual
observation vector, the “edge” feature function between two hidden states, and the “label
edge” feature function between a hidden state and a class label. Therefore, for a three-
state HCRF, like the one in figure 3.3, the features included the 10 cues as those are
listed in Table 3.4, the 9 (3x3) transitions from one hidden state to the other, and the
6 (3x2) transitions from each hidden state to a class label. After the HCRF is trained
on a training set, we are able to sort the weights it learned for each set of features
and derive useful conclusions about what hidden states are associated with which label,
which features are most important in each hidden state, and what are the most probable
transitions given a current hidden state.

3.3 Experiments

3.3.1 Dataset and Cues

Our dataset originated from the Canal 9 Database of Political Debates [51], one that
comprises of 43 hours and 10 minutes of 72 real televised debates on Canal 9, a local
Swiss television station. The debates are moderated by a presenter, and there are two



sides that argue around a central issue, with one or more participants on each side.
Hence, the database is rather rich in episodes of spontaneous (dis)agreement.

The dataset we used comprises of 53 episodes of agreement and 94 episodes of dis-
agreement, which occur over a total of 11 debates. These episodes were selected on the
basis of the verbal content, and thus, only episodes of direct and indirect (dis)agreement
were included (see Sect. 3.1.1). As the debates were filmed with multiple cameras, and
edited live to one feed, the episodes selected for the dataset were only the ones that were
contained within one personal, close—up shot of the speaker.

We automatically extracted nonverbal auditory features used in related work, specif-
ically the fundamental frequency (FO) and energy, by using OpenEar[20]. Since we are
interested in answering questions relevant to the automatic recognition of (dis)agreement
based on the dynamics of multimodal cues, we manually annotated the dataset for a
number of hand and head gestures, in order to gather as accurate temporal information
about the gestures as possible. The cues we finally extracted and used in our experi-
ments are listed in Table 3.4; the visual cues that may not be self—explanatory from their
title are depicted in figure 3.1. The hand and head gestures we included were based off
the relevant list of cues from the Social Psychology literature (see Sect. 3.1.1), with the
exception of a number of head and hand gestures that never appeared in the dataset, and
the addition of the ’Shoulder Shrug’ and the ‘Forefinger Raise-Like’ gestures. The latter
is a ‘Forefinger Raise’ without an erect index finger.

| CUE | KIND |
Head Nod Head Gesture
Head Shake Head Gesture
Forefinger Raise Hand Action
‘Forefinger Raise’-Like Hand Action
Forefinger Wag Hand Action
Hand Wag Hand Action
Hands Scissor Hand Action
Shoulder Shrug Body Gesture
Fundamental Frequency (FO) | Auditory Cue
Energy Auditory Cue

Table 3.4: The list of features we used in our experiments.

3.3.2 Methodology

We conducted experiments with Support Vector Machines (SVMs), as our baseline
static classifiers, Hidden—Markov Models (HMMs), the most—commonly used dynamic
generative model, and Hidden—State Conditional Random Fields (HCRFs), the dynamic
discriminative model we believe is most appropriate for such a task. We conducted dif-
ferent experiments for three groups of cues: only auditory, only visual, and both auditory
and visual ones.



Our cues were encoded differently for our static and dynamic classifiers, but the
same information was available to all classifiers. For SVMs, the features of each gesture
were the start frame and the duration (total number of frames) of the gesture within the
segment of interest. For the auditory features we used the mean, standard deviation,
and the first, second(median), and third quartiles of each. The later values did not take
into account the undefined areas of FO, and all values were scaled from -1 to 1. For the
experiments with HMMs and HCRFs, we encoded each gesture in a binary manner (1 if
the gesture is activated in a certain frame, O otherwise), and used the raw values of our
auditory features, normalized per subject.

All our experiments were run in a leave—one—debate—out fashion, i.e. the testing
set always comprised of examples from the one debate which was not included in the
training and validation sets. The optimal model parameters, i.e. number of hidden
states for each test set and number of mixtures of Gaussians for HMMs and the number
of hidden states and the regularization factor for HCRFs, were chosen by a three—fold
validation on the remaining debates. The HMM and HCRF experiments were run with
10 different random initializations, the best of which was chosen each time during the
validation phase (i.e., based on performance on the validation sets). The evaluation
metric that we used for all the experiments was the total accuracy in a balanced dataset,
i.e. percentage of sequences for which the correct label was predicted in a test set that
contains an equal number of agreement and disagreement examples.

3.4 Results and Discussion

Figure 3.2 summarizes the results of the experiments on spontaneous agreement and
disagreement classification using auditory, gestural and both auditory and gestural fea-
tures. It is clear that:

(a) It is possible to perform the task of spontaneous agreement and disagreement
classification without the use of any verbal features.

(b) The temporal dynamics of the cues are vital to the task, as it is evident that SVMs
are not able to perform well by using static information alone.

(c) HCREFs outperform SVMs and HMMs, especially when the cues used are multi-
modal and the underlying dynamics of the different modalities need to be learned.

Figure 3.3 shows how a high—performing three-state HCRF model is able to suc-
cessfully discriminate between the two social attitudes. By examination of the weights
learned by the HCREF for each of its cues, hidden states, and transitions, we were able to
rank, according to importance, the information that the model used. The model assigned
one state as prevalent for each of the two classes, and one state as shared between them.
It also learned what transitions are more likely given each state and each attitude. In
the figure the transitions from each state most associated with each attitude are marked
as green and red connections, for agreement and disagreement respectively. Also each
state contains its highest ranked features in a descending order of importance. The
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Figure 3.2: Comparisons of recognition performance (total accuracy on a balanced
dataset) by the classification methods we explored on the three different groups of fea-
tures used.



highest ranked features in these ‘exclusive’ states, combined with the most probable
transitions show that the Head Nod and the Head Shake, which are considered, by so-
cial psychologists, the most prevalent cues in agreement and disagreement respectively
(see Sect. 3.1.1), are also the most discriminative cues here. Finally, it could be the
case that ‘Forefinger Raise-Like’ gestures might in fact play no role in discriminating
between the two attitudes.

DISAGREEMENT AGREEMENT

. Head Shake

Forefinger Raise-
Like

N

Hand Wag
Head Nod
FO
Forefinger Raise

Head Nod

Forefinger Raise-
Like

Figure 3.3: The features learned for each state by a three-state HCRF model. The green
and red connections correspond to the highest—ranked transition from each state in the
cases of agreement and disagreement respectively. The middle state is shared among
the two classes.

34.1 Experiments on FROG data

In FROG project, our framework was used for detection of social attitudes like agreeing
and disagreeing. Detection is based on the state of the art in cognitive sciences and based
on morphological and temporal correlations between relevant visual cues, including
facial gestures like frowns and smiles as well as head gestures like tilts and nods. As
features, the facial point landmarks as well as the head pose were used producing very
satisfactory results. The method for facial landmark detection as well as for face pose
estimation was developed for FROG and it was presented in deliverable 3.1. Figure
3.4 depicts some real visual FROG head nod detection results, while Figure 3.5 depicts
some real visual FROG head shake detection results.
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Figure 3.4: Real visual FROG head nod results.
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Figure 3.5: Real visual FROG head shake results.



Chapter 4

Conclusion

A method for performing robust human face recognition in uncontrolled (outdoor)
environments has been developed for FROG project. Human face recognition is per-
formed in order for the robot to decide if a new visitor comes close to the robot and
starts interacting with it. Thus the robot could adapt its tour guide strategy based on
the new visitor’s implicit affective feedback (e.g. attention and interest). Furthermore,
a multi-cue visual method for detection of social attitudes like agreeing and disagreeing
has also been developed for FROG project. Detection is based on the state of the art in
cognitive sciences and morphological and temporal correlations between relevant visual
cues, including facial gestures like frowns and smiles as well as head gestures like tilts
and nods. For this purpose, facial landmarks as well as face pose were used. Based
on our experiments on real FROG data, this method meets all the requirements of the
FROG project regarding the detection of social attitudes like agreeing and disagreeing.
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