
Deliverable D5.1
Iterative Integration and Evaluation Report

Consortium

UNIVERSITEIT VAN AMSTERDAM (UvA)
YDREAMS - INFORMATICA S.A. (YD)

IDMIND - ENGENHARIA DE SISTEMAS LDA (IDM)
UNIVERSIDAD PABLO DE OLAVIDE (UPO)

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE (ICL)

Grant Agreement no. 288235

Funding Scheme: STREP

DOCUMENT INFORMATION

Project

Project acronym: FROG
Project Full Title: Fun Robotic Outdoor Guide
Grant agreement no.: 288235
Funding scheme: STREP
Project start date: 1 October 2011
Project duration: 30 September 2014
Call topic: ICT-2011.2.1 Cognitive Systems and Robotics (a), (d)
Project web-site: www.frogrobot.eu

Document

Deliverable number: D5.1
Deliverable title: Iterative Integration and Evaluation Report
Due date of deliverable: M6 - March 31, 2012
Actual submission date: April 12, 2012
Editors:
Authors: YDreams, UPO
Reviewers: All Partners
Participating beneficiaries: YDreams, UPO
Work Package no.: 5
Work Package title: Integration, Evaluation and Demonstrator
Work Package leader: YDreams
Work Package participants: All Partners
Estimated person-months for deliverable:
Dissemination level: Public
Nature: Report
Version: 0.1
Draft/Final Final
No of pages (including cover): 27
Keywords: Integration, Robotic Frameworks, Augmented Reality

Contents

1 Introduction . 6
2 FROG Project . 7
3 Software Frameworks . 8

3.1 Player . 8
3.2 ROS (Robot Operating System) . 8
3.3 YARP (Yet Another Robot Platform) . 9
3.4 CARMEN (Carnegie Mellon Robot Navigation Toolkit) 9
3.5 OROCOS (Open Robot Control Software) . 10
3.6 Orca . 10
3.7 Microsoft Robotics Developer Studio (MRDS) . 11
3.8 Urbi . 11
3.9 MRPT (The Mobile Robot Programming Toolkit) 11
3.10 MOOS (Mission Oriented Operating Suite) . 12
3.11 OpenJAUS . 12
3.12 Evolution Robotics ERSP . 12
3.13 CLARAty (Coupled-Layer Architecture for Robotic Autonomy) 13
3.14 GenoM . 13
3.15 Total Immersion D’Fusion . 13
3.16 Metaio Unifeye . 14
3.17 Unity 3D . 14
3.18 YVision . 14

4 Comparison Criteria and Evaluation . 15
5 Discussion . 17
6 Conclusions . 19

2

List of Figures

1 Provisional conceptual scheme of the FROG robot. 7
2 Venn diagram for the operative systems the frameworks can interact with. A framework

in the "Linux" category implies compatibility with any of Ubuntu, Arch, Fedora, Gentoo,
Suse, Slackware, Debian, Xenomai. A framework in the "Win" category implies compat-
ibility with any of WindowsXP, Win7, WinCE. A framework in the "Mac" category implies
compatibility with any of Mac OS X, BSD. A framework in the "Solaris" category implies
compatibility with any Solaris version. 17

3 Venn diagram for the languages in which the frameworks can be accessed. Only four
mainstream languages are shown, namely c/c++, java, python and any of the .Net family.
This does not imply the frameworks APIs being limited to the languages shown, some
being also available in TCL, XML, etc. Those frameworks with APIs solely available in
other languages (such as Lua) are shown outside every bubble. 18

3

List of Tables

1 Comparison of robotic frameworks with respect to OS compatibility and programming
language. 23

2 Comparison of robotic frameworks with respect to communication domain, connection
topology, control topology, communication paradigms provided and underlying transport. . 24

3 Comparison of robotic frameworks with respect to simulation capabilities, license, date of
the last update, support quality, discrete event system. 25

4 Comparison of robotic frameworks with respect to control algorithms and drivers. 26
5 Comparison of robotic frameworks with respect to image rendering, sound player, aug-

mented reality, physics engine, statistical tools, and tracking of markers, faces and full
body. 27

4

Abstract

This survey compares several software frameworks with the objective of selecting the most suitable to
be adopted in the FROG EU project. The basic tools provided by these frameworks will be exploited
during the project to construct algorithms in the areas of localization and navigation, people and emotion
detection, and augmented reality to create an appealing interaction with tourists. The project objectives
are presented and its modules are briefly described. The main characteristics of the studied frameworks
are highlighted. The multimedia framework YVision is also presented and its key features emphasized.
The key requirements for the FROG framework are identified and the advantages and disadvantages of
each one are analysed. Finally, different solutions are presented and discussed.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

5

1 Introduction

Since the construction of the first automatic machines, robotic agents have achieved an impressive
progress, especially during the second half of the last century. Nowadays, they perform a number of
tasks that range from industrial handling and home cleaning, to rescue missions in disaster sites and
space exploration. Despite their notable evolution, service robots are still an emerging and promis-
ing market in areas so different as transportation of physically challenged people, tourist guiding, or
telepresence.

The FROG project aims to develop an interactive outdoor robot guide for European cultural and
historical sites. The project is divided into different areas, the navigation and localization algorithms, the
detection of the affective and social behavior of tourists, and the interaction between the robot and the
tourists. The FROG project covers a very wide range of vectors of knowledge. It needs to address the
robot control problem, taking into account that the site might be full of tourists. But also needs to handle
the identification and tracking of people, the detection of their emotional state, and the creation of an
interesting personality for the robot. FROG resorts to state-of-the-art augmented reality techniques to
offer the user appealing multi-media content about each point of interest.

Software frameworks provide functionalities that facilitate the development of computational applica-
tions. In particular, the FROG relies on these tools to provide the standard elements necessary for the
development of new algorithms for each of the project vectors.

Each framework is target at a different area (e.g. robotics, multimedia applications, augmented re-
ality). The development and wide-spreading of complex robots demanded great programming effort,
from the driver-level software to navigation and path planning. To manage the complexity and increase
the development speed of new robots, several robotic frameworks have been proposed. Such frame-
works generally incorporate middleware, drivers, algorithms, tools, and utilities. A middleware is a
resource that abstracts the user from low-level communication details. The aim of robotic frameworks is
to perform the low-level interface with the hardware and to do high-level operations that give the robot
awareness of the environment that surrounds it and enables it to act on that environment. It is desirable
that a low-level layer should account for all the communications with the specific sensors and actuators,
providing standardized data so that the implementation of the high-level algorithms does not depend
on the sensor/actuator model and manufacturer, but only on the information provided. A planner or
decisional layer is often also part of the software package. This layer is an event-driven supervisor that
determines the sequence of tasks for execution and is reactive to events from the lower layers. It can
be implemented by a discrete event system, such as finite state machines and petri nets. There are
several robotic frameworks, each one meets the particular needs that the respective developers find
most relevant. This work presents an analysis of some of the most widely adopted robotic frameworks,
namely, Player, ROS, YARP, CARMEN, OROCOS, Orca, MRDS, URBI, MRPT, MOOS, OpenJAUS,
ERSP, CLARAty, and GenoM.

Augmented reality denotes an online view of the real world augmented by computer-generated infor-
mation such as sound, video, and graphics. This technology results in an enhanced perspective of the
world by the user. This is far different from virtual reality, which replaces the real world with a simulated
one. Total Immersion D’Fusion and Metaio Unifeye are augmented reality frameworks that provide the
basic tools to develop augmented reality applications.

Game engines also provide useful tools such as rendering of 3D images and physics simulation.
The game engine Unity provides tools for creating 3D video games or other interactive content such as
architectural visualizations or real-time 3D animations.

In this survey, different frameworks will be evaluated with respect to important criteria for the project
such as supported Operating Systems (OS), programming language, modular topology, communication
protocol, license of distribution, availability of drivers for sensors and actuators, availability of control
algorithms, quality of the support and when it was performed the last update to the framework. The
existence of features such as a built-in discrete event system, image rendering, sound player, aug-
mented reality, physics engine, statistical tools, and tracking of markers, faces and full bodies will also
be studied.

We do not intend to point out the best framework, in fact, such framework, probably, does not exist,
but rather to indicate the advantages and disadvantages of each one for the particular needs of the
FROG project.

The remaining of this document is organized as follows. In Section 2 the FROG project is presented.
Several frameworks will be described in Section 3. In Section 4 the key comparison criteria are identified
and the frameworks evaluated. In Section 5, we will discuss the advantages and disadvantages of

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

6

different solutions. Finally, some concluding remarks will be presented in Section 6.

2 FROG Project

FROG (Fun Robotic Outdoor Guide) aims to develop a guide robot that engages tourists by exhibiting
a friendly personality and behavior. The project comprises advances beyond the current state of the
art in the areas of vision-detection, affective-computing, intelligent agent architecture, and dependable
autonomous outdoor robot operation.

In order to meet its goals, the FROG robot requires a fascinating combination of "hard"-skills and
"soft"-skills. The localization and navigation in crowded sites with irregular terrain presents a great chal-
lenge and is a totally open problem for the scientific community. These are "hard" requirements that call
for new control and estimation techniques, and for efficient algorithms for human and obstacle detection.
These problems need to be addressed in a robust way, always bearing in mind safety, especially for the
humans, but also for the environment and for the robot itself. One of the most interesting aspects of this
project is its "soft"-skills. The guiding task requires the assessment of the affective social behavior of
the tourists. A captivating and friendly personality together with an appropriate reaction to the tourists
behavior are key to meet the desired goals. Giving the robot these human-like behaviors is a major step
forward the acceptance and integration of service robots into human communities and it will be one of
the main contributions of the project.

The best way to address the project complexity and promote the reuse of the algorithms in other
potential applications is by means of a modular architecture, where each module fulfils a specific task
and where the modules communicate with each other through a middleware to exchange information.
Figure 1 illustrates a provisional conceptual scheme of the FROG robot where some modules can be

Figure 1: Provisional conceptual scheme of the FROG robot.

identified. The key components of the robotic software system that will be developed are individual
modules that

• Detect obstacles, recognize certain objects such as pedestrians, and track them

• Constantly localize the robot in the environment,

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

7

• Detect affective behaviors of humans

• Plan routes for the robot, taking into account the humans and their behaviors

• Execute the planned trajectories considering all navigation related issues such as dynamic obsta-
cles,

• Provide users with relevant content, and

• Interface with users in an engaging and enjoyable way.

It is important to note that not all modules will operate directly on the robot’s hardware. A hardware ab-
straction layer will separate the software modules from the hardware, allowing the transfer of developed
technology to other robots.

3 Software Frameworks

There are several frameworks available for robotics and augmented reality applications which will allow
us to reduce the development time. In this section, we will present a brief description of software
frameworks, which provide tools necessary for the FROG project. We include some of the best known
robotic frameworks, namely, Player, ROS, YARP, CARMEN, OROCOS, Orca, MRDS, URBI, MRPT,
MOOS, OpenJAUS, ERSP, CLARAty, and GenoM. Since a great part of the project is dedicated to the
interaction with tourists and displaying information in an appealing way, we will describe two well known
augmented reality frameworks, namely, Total Immersion D’Fusion and Metaio Unifeye, and the game
engine Unity. We will also include the more general purpose framework YVision, which is targeted at
areas such as simulation, computer vision, embodied agents, and embodied interaction.

3.1 Player

Player [13, 31] is a robot control interface that provides drivers for several sensors and robotic platforms
and also some high-level algorithms.

The framework is based on a star topology and the server/client model: each instance of the Player
server controls not only the connection establishment, but also the data transferred from (to) the sensors
(actuators). Multiple robots would run multiple instances of the Player server. It supports multiple
concurrent client connections to devices, and therefore, it is suitable for distributed and collaborative
control.

The Player server can run on any POSIX platform (including ARM- and PPC- based Linux systems).
It resorts to CMake to archive cross-compatibility and it can be built natively on Windows. A client
program can run on any machine that shares a network connection with the robot and be written in any
language that supports TCP sockets. Libraries in C, C++, Pyton and Ruby are officially supported, while
Java, Ada and Octave are supported by third parties.

The Player project also includes two simulators, Stage and Gazebo. Stage is a multiple robot 2D
simulator with Player interface, which includes several sensor models such as sonar, scanning laser
range finder, pan-tilt-zoom camera, and odometry. The interface between Player and Stage allows to
develop and refine different control strategies, which can afterwards be applied in real robots with few
or even no changes. Gazebo is also a simulator compatible with Player and is suitable for 3D multiple
robot simulation in outdoor and indoor environments. It provides realistic sensor feedback and physically
plausible interactions between objects thanks to the Open Dynamics Engine. Stage is mainly targeted
to simulate a large robot population in a 2D environment, while Gazebo is designed to simulate smaller
robot populations but with higher fidelity and in a 3D environment.

The project is released under the GPL and LGPL. All code from the Player project is free to use,
distribute and modify, but all derived work must be distributed under the same license. Further details
about the different software licenses are given in Appendix 6.

3.2 ROS (Robot Operating System)

From the same developers of Player, ROS [14, 39] is an open-source robotic framework with function-
alities that range from low-level PID control to high-level localization algorithms such as SLAM.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

8

It has a distributed architecture based on independent nodes (executables) that communicate using
messages transmitted over TCP/IP sockets. There is a Master node where the client nodes must
be registered, but at runtime, the nodes are connected in a peer-to-peer topology. With this central
node control, ROS provides for both client/server and publish/subscribe paradigms. The latter may be
valuable at integration time.

ROS is developed and tested for Unix-based platforms, namely, Ubuntu and Mac OS X. Although
the execution of the Master ROS node in Windows platforms is not yet fully possible, a ROS node can
be written for any system that supports TCP/IP communication.

Both ROS and Player have a large community of users, which is an important asset as it provides
valuable support and helps the development of new features. The number of ROS adopters grows
steadily, and it might well be soon regarded as a de facto standard in the robotic environment. This
framework inherits code from several other open-source projects. Many drivers, high-level algorithms,
and the two simulators (Stage and Gazebo) from the Player project are available off-the-shelf. Proce-
dures exist also to integrate those not included. Whereas Player offers more hardware drivers, ROS
offers more implementations of algorithms. ROS is more powerful and flexible than Player, but, as
usual, it means greater complexity. Among the supported hardware there is the Microsoft Kinect. Fi-
nally, this framework comes with several visualization, data logging and data replay tools, that are useful
for debugging.

ROS is a free and open-source software distributed under a BSD license.

3.3 YARP (Yet Another Robot Platform)

YARP [20, 35, 29] is an open-source software library especially suitable for (but not limited to) humanoid
robots.

This framework is modular and is composed by different processes that communicate via YARP
ports. The YARP framework can work in two configurations: with a central node managing name res-
olution (central node control topology) or resorting to DNS/hard-coded name resolution (external/hard-
coded control topology). In any of them, YARP allows application objects to provide services to each
other (service oriented paradigm), and to establish direct connections to each other. Yarp can use sev-
eral transports, namely those supported by the ACE library YARP uses. These include sockets, shared
memory, pipes and corba RPC among others.

YARP itself provides some marshalling guidelines for compatibility, but does not enforce them. YARP
is compatible with CMake in order to be cross-platform. Hence, processes can be executed on different
OS, provided that the communication methods are available, which is usually the case.

The main programming language of YARP is C++, but it is compatible with many languages, such
as Python, Java, Tcl, Lisp, Ruby, Pearl and others via SWIG bindings.

The existing drivers support sensors such as cameras, microphones, Microsoft Kinect and actuators
such as motors. However, the available high-level algorithms are scarce. Although, there are YARP
libraries that connect with Stage, the framework does not possess its own simulator. YARP is available
under GPL and some of its components under LGPL.

3.4 CARMEN (Carnegie Mellon Robot Navigation Toolkit)

CARMEN [2, 36] is a robotic framework constituted by a collection of modules (processes) that provide
a consistent interface and a basic set of primitives to control a variety of commercial robot platforms.

The CARMEN modules communicate using the Inter-Process Communication library [6], by R. Sim-
mons and D. James, also developed at the Carnegie Mellon University. The IPC lib model involves
an application independent central node (taking the functions of name and type server) and several
application-specific processes. The IPC lib allows application objects to talk to each other using the
publish/subscribe, service oriented and point-to-point communication paradigms. The IPC lib provides
some additional features as well, such as data marshalling.

The modules are written in C but Java support is provided. Linux is the only supported OS.
The Carmen framework is organized in a three-layer architecture. The base layer governs hardware

interaction and control, by providing an abstract set of base and sensor interfaces. It also provides
low-level control loops for simple rotation and straight-line motion and integrates sensor and motion in-
formation to provide improved sensor odometry, and also allows for low-level collision detection (distinct
from collision avoidance). The navigation layer implements intermediate navigation primitives includ-
ing localization, dynamic object tracking, and motion planning. Unlike many other navigation systems,

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

9

motion control is not divided into high-level (strategic) planning and lower-level (tactical) collision avoid-
ance; instead, all but the lowest-level motor control is integrated into a single module. This allows for
more reliable motion planning, at a reasonable computational cost. Finally, the third layer is reserved
for user-level tasks employing primitives from the second layer. The CARMEN navigation and mapping
algorithms require the presence of a laser range finder.

The following mobile robot platforms are supported: iRobot ATRV, iRobot ATRVjr, iRobot B21R, Ac-
tivMedia Pioneer I, ActivMedia Pioneer II, Nomadic Technologies Scout, Nomadic Technologies XR4000
OrcBoard, and Segway. The sensors supported are: SICK LMS laser measurement system, SICK
PLS proximity laser scanner, GPS receiver using the NMEA protocol, sonar (preliminary support), and
Hokuyo IR Support (PB9).

CARMEN is an open software distributed under GPL restrictions.

3.5 OROCOS (Open Robot Control Software)

Targeted primarily at the field of robotic manipulators, OROCOS [12, 27, 40] is an open-source, modular
framework for robot control.

The OROCOS project supports four libraries: the Kinematics and Dynamics Library (KDL), the
Bayesian Filtering Library (BFL), the Real-Time Toolkit (RTT), and the Orocos Component Library
(OCL). The KDL contains several basic functions such as kinematic chains, real-time inverse and for-
ward kinematics, and Pyton bindings. Dynamic Bayesian Networks, Kalman Filters and Particle Filters
are implemented in the BFL. OCL provides some ready to use control components. Finally, the RTT
provides a C++ framework, targeting the implementation of (realtime and non-realtime) control systems.

Orocos was designed to be a good framework for in-process application components (what we
termed the local communication domain). Orocos has support for very efficient inter-component com-
munication in-process (lockfree buffers) and inbetween-process (message queues), but for multi-cpu/
multi-computer communication, external middleware is needed. Usual choices are CORBA and ROS
transport.

No simulation environment is made available by the developers. On the other hand, advanced
control algorithms for robotic arms are provided.

It is written in C++ and it has multi-platform support (using CMake) with Windows, Mac OS X and
Linux. Extensions to other robotics frameworks, namely, ROS and YARP are also available.

Regarding licenses, the KDL and OCL software are licensed as LGPL software. Both the RTT and
BFL software are licensed as GPL + runtime exception, which is exactly the same license as the GNU
Standard C++ library.

3.6 Orca

Orca [11, 26, 33] is an open-source framework for developing component-based robotic systems. It pro-
vides the means for defining and developing the building-blocks which can be pieced together to form
arbitrarily complex robotic systems, from single vehicles to distributed sensor networks. Historically,
Orca began as part of the OROCOS project funded by the EU, but eventually it became an individual
project. Software reuse is stimulated by the definition of a set of commonly-used interfaces and by an
attractive high-level API. It has a modular architecture based on Component-Based Software Engineer-
ing.

Orca relies upon ICE project as a middleware. ICE can be used in a centralized control, providing
point-to-point, service oriented and pub/sub paradigms, or in external/hard-coded control topology, pro-
viding point-to-point and service oriented only. Marshalling and an interface definition language (SLICE)
are available. Current transport are TCP/IP and UDP.

All components which are currently in the repository are written in C++. However, there are examples
in Java, Python, and PHP. Slice interfaces can be compiled to C++, Java, Python, PHP, C#, Visual
Basic, Ruby, and Objective C. Full Linux support is provided. Interfaces, core libraries and utilities, and
some components compile in Windows XP and there are experimental builds in Mac OS X.

Regarding drivers, in the project repository, interfaces are available with GPS receiver, laser range
finder, and cameras, and also some libraries useful for path planning applications. Orca can be used
with Stage and Gazebo simulators.

The components are released under LGPL and GPL.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

10

3.7 Microsoft Robotics Developer Studio (MRDS)

The software giant Microsoft has developed MRDS, which is a full Windows-based robotic framework
with integration with Microsoft Visual Studio. Four main components are included in the package: the
Concurrency and Coordination Runtime, the Decentralized Software Services, the Visual Programming
Language, and the Visual Simulation Environment, which are separately available for use in commercial
applications.

The contol topology of the framework can be centralized or external/hard-coded, providig service-
oriented and pub/sub paradigms. Everything is abstracted by the Concurrency and Coordination Run-
time, which makes it hard to find out the communication details.

Its main programming language is C++, but it is also compatible with Visual Basic and Iron Python.
The more recent commercial version of MRDS is the 2008 R3 which is only compatible with Windows
XP, Windows 7 and Windows Server. Recently, the version 4 Beta was released , but it is still only
available for evaluation.

Very few useful robotic algorithms are included. On the other hand, MRDS can be used in a variety
of configurations: the robots can be directly connected to the PC using RS-232, Bluetooth, USB, etc.,
can be used on a PC on board the robot, or can be used only with the simulator to test new algorithms
and control techniques.

MRDS provides a 3D simulation environment, visual programming interface, and easy access to the
robot sensors and actuators, including the Kinect system.

3.8 Urbi

Another software platform used to develop software for robotic and complex systems is Urbi [18, 23, 25].
This cross-platform software is written in C++ and it is based on the UObject distributed C++ component
architecture, which is an event-driven script language. The UObject components can be called from
urbiscript programming language, and appear as native objects that can be scripted to specify their
interactions and data exchanges.

Relative to communications, Urbi exhibits a central node control architecture, providing application
objects with both service oriented and publish/subscribe paradigms. It regularly uses TCP/IP as a
transport. The later versions of Urbi 2.x integrate support for communicating with ROS topics and
services. A bridge to YARP is provided as a module.

Regarding programming languages, Urbiscript provides parallelism and event-based programming,
C++ like syntax, service oriented architecture, and client interfaces with Java and Matlab. Despite its
benefits, it has the shortcoming that it still requires learning a relatively new language.

It is compatible with Linux, Mac OS X, Windows, and others, and can run on various processors:
x86, ARM, mips, powerPC, etc.

The platform does not have its own simulation environment, but it is compatible with Webots, which
is a commercially available (1900ePro, 260eEdu) simulation software. Gostai, a French company, has
several plug and play UObject components useful for robotics, e.g. voice recognition, voice synthesis,
face detection (including a bridge with OpenCV), face recognition, SLAM, color blob detection, and SIFT
based object recognition.

Urbi is open-source with GPL compatible license (GNU AGPL v3).

3.9 MRPT (The Mobile Robot Programming Toolkit)

The MRPT [9, 28] is composed by C++ libraries and a number of ready-to-use applications. It was
developed by the research group MAPIR from the University of Málaga, with worldwide contributions.
This framework aggregates efficient algorithms for SLAM, SIFT, detection and tracking of visual features,
Bayesian inference, random number generators for a variety of probability distributions, Kalman filtering
and particle filters for localization, among others.

MRPT is mainly intended for in-process application objects (local communication domain). For inter-
process communication (remote communication domain), it provides some wrappers on sockets and
serialization/deserialization facilities. Thus, the framework itself only provides for point-to-point remote
connectivity, relying on an external/hard-coded control topology.

The C++ libraries are tested in 32bit and 64bit systems, and are compatible with Linux, Windows,
and partially with Mac OS X. Good tutorials, a reference book, and a forum are available to provide
support to the developers that use this framework.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

11

The whole of the MRPT functionality is also made available as a ROS package, mrpt-ros-pkg.
Drivers for some sensors such as cameras, laser range finder, GPSr, Microsoft Kinect, and rate gy-
ros are build-in into the software.

MRPT is licensed under the GNU GPL version 3.

3.10 MOOS (Mission Oriented Operating Suite)

MOOS [8] which stands for Mission Oriented Operating Suite, is a set of C++ libraries and applications
designed to facilitate research in the mobile robotic domain. The provided functionalities range over
low-level, multi-platform communications, dynamic control, high precision navigation and path planning,
mission logging and playback.

This framework exhibits a star topology, where several client applications connect to a central node.
All communication happens via that central server. The network has no peer-to-peer communication,
ensuring that the clients do not communicate directly with each other. The clients operate independently,
in a publish/subscribe architecture entirely carried by the central node. The application objects can be
distributed over any number of machines.

A Java version of MOOS client is available. Linux and Mac OS X are the only OS supported by
MOOS. On the official webpage [8], a set of HTML and PDF documents can be found, which constitute
the basic support for this software, since neither a forum, nor tutorials are available.

From the available information it was not possible to know the license of this framework.

3.11 OpenJAUS

OpenJAUS [10] is an open-source implementation in C++ of Joint Architecture for Unmanned Systems
[1] (JAUS). JAUS is a standard chartered by de Department of Defense from the USA to define the
communication and interoperation protocols of unmanned systems within a network. AUS is basically a
common messaging protocol for robots.

JAUS employs a Service Oriented Architecture (SOA) approach to enable distributed command and
control of these systems, which is said to allow efficient exchange of information between the CPUs
of distributed systems. This framework can emulate the publish/subscribe paradigm also, by adding
events to the service-oriented model. The framework relies only on an external control topology for
name/address resolution, the rest being fully distributed. This is made possible by imposing a minimal
set of discovery remote services to be implemented in every application object. It uses at least UDP
and TCP/IP as a transport.

OpenJAUS runs under Linux and Windows. Regarding documentation, a forum can be found on its
webpage [10] providing developer oriented support.

No information is provided about any available drivers for sensors or robotic platform. OpenJAUS
does provide a library with all the standard JAUS messages, so to ease the integration of your robots
within a JAUS network.

For commercial, government, or customer funded academic projects use, it is required to purchase
one or more commercial developers’ licenses. One for each person developing software with Open-
JAUS. The commercial license of OpenJAUS 4.0 fee is around 2000e.

3.12 Evolution Robotics ERSP

The company Evolution Robotics has developed the robotic framework ERSP 3.1 [4]. This software
package is targeted at R&D and Product Groups from companies worldwide. Some technologies in-
cluded are: the visual pattern recognition software (ViPRTM), visual localization and mapping system
that enables a robot to use only one camera combined with wheel encoders (vSLAM R�), an infras-
tructure, tools and facilities for handling and managing the robot hardware and software components
(ERSATM).

ERSP is constrained to the local communication domain.
This framework includes a graphical composer, which can be used to create programs based of

a number of reusable building blocks. The building blocks correspond to behaviors, which are ac-
tivated/deactivated in run time by a higher-level program. However, no simulator is build-in into the
package, and the range of supported hardware is small.

ERSP is available under the Windows 2000/XP Professional, and Linux: Debian Sarge, Fedora
Core 3 and Red Hat 7.3.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

12

3.13 CLARAty (Coupled-Layer Architecture for Robotic Autonomy)

CLARAty [3, 37, 38, 24] is a robotic platform built by NASA in collaboration with some universities
and released as an open-source project. This software implements an architecture comprised of two
layers, the Functional layer and the Decision layer. The Functional layer accounts for the hardware
drivers, navigation algorithms, localization algorithms, and behaviors, while the Decision layer uses a
declarative model-based approach to define activities. This layer incorporates a CASPER planner that,
given the mission constraints, schedules all the activities required to perform the desired task.

CLARAty seems to have a central node control topology. Though communication between layers is
based on sockets, it uses ACE as a middleware, so a wide variety of transports should be available.

The package includes a GUI and graphical display developed resorting to the Qt visual library.
This software is released under TSPA license, which renders its use in commercial applications

impossible.

3.14 GenoM

GenoM (Generator of Modules) [5, 30, 34] is a tool to design real-time software architectures. It is mainly
targeted at complex on-board systems, such as autonomous mobile robots or satellites. The GenoM’s
architecture is based on three layers, a Functional layer, an Execution Control layer and a Decisional
layer. The Decisional layer planner and supervisor account for the planning of tasks and are reactive
to external events. The GenoM’s planner is based on an IxTeT temporal planner and the supervisor is
based on a Procedural Reasoning System (OpenPRS). The Execution Control layer is composed by
input and output buffers, by a model checker and by a system state database. The input buffer receives
the requests from the Decisional layer. The output buffer sends requests to the Functional layer, and
the system state database records the current and past state of the robot and its resources. Finally, the
model checker performs the necessary actions according to the requests received from the Decisional
layer. The Functional layer comprises the controllers and execution engines. The former manage the
modules according to external requests, and the latter perform the activities required by the controllers.

GenoM allows encapsulating the operational functions on independent modules that manage their
execution. A module is a standardized software entity that is able to offer services which are provided
by a set of algorithms. Modules can start or stop the execution of these services, pass arguments to the
algorithms and export the data produced. The framework is thus fully service-oriented, and its control
topology has no central node, but relies on external/hard-coded name discovery and resolution. As a
transport, it uses TCP/IP and shared memory.

GenoM modules run under various operating systems (Linux, BSD, Xenomai). The modules are
automatically produced by GenoM using a common generic model of a module and a synthetic descrip-
tion of the considered module. This module description is elaborated using a very simple language
that allows programmers to declare and describe its components: services, parameters, qualitative re-
sults, exported data, temporal and logical characteristics, etc. Modules provide two standard interface
libraries in various programming languages (C, tcl, XML, open-prs).

Besides ease of development (the module description does not depend on the operating system and
does not require specific knowledge on distributed systems), the generation of the modules guarantees
that they fit with the generic common model. It is an important feature to handle large systems. The
underlying standardization of the structure, the behavior and the interface of the modules allows the
automation of their integration.

GenoM is compatible with the LAAS morse simulator and is distributed under a BSD license.

3.15 Total Immersion D’Fusion

Total Immersion D’Fusion [15] is an augmented reality framework that offers tools for tracking, image
rendering, etc. D’Fusion tracking does not require markers (bar codes, or specific black and white
shapes) and allows for robust tracking of 2D and 3D objects. Existing documents and products can be
adapted for augmented reality applications, eliminating the need to create them from scratch. D’Fusion
is able to manage and animate very complex 3D objects through a simple language allowing for devel-
opment and maintenance. D’Fusion can also encrypt proprietary customer assets to guarantee security.

It is compatible with Windows PCs, and behaviors and interactions can be controlled using the
scripting language Lua.

D’Fusion is only available as a commercial tool.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

13

3.16 Metaio Unifeye

The augmented reality framework Metaio Unifeye [7] provides interesting tools for tracking, capturing
and rendering. These include 2D image tracking, 3D object tracking, face tracking, sensor and offset
calibration tools. This augmented reality framework is developed by the company Metaio and is target at
professional applications for business and entertainment. The software allows the combination of real-
world footages and images and 3D CGs. The tools provided are useful not only for visualization, but
also for analysis of virtual- and real-world space, sales promotion, entertainment, industrial applications
as well as consumer applications.

3.17 Unity 3D

The Unity [17], on the other hand, provides libraries for creating 3D video games or other interactive
content such as architectural visualizations or real-time 3D animations. Unity’s development environ-
ment runs on Microsoft Windows and Mac OS X, and the games it produces can be run on Windows,
Mac, Xbox 360, PlayStation 3, Wii, iPad, iPhone as well as Android. It can also produce browser games
that use the Unity web player plug-in. Unity consists of both an editor for designing content and a
game engine for executing the final product. Unity is similar to Director, Blender game engine, Virtools,
Torque Game Builder, and Gamestudio, which also use an integrated graphical environment as the
primary method of development.

3.18 YVision

Nowadays, there is great demand for multimedia solutions focused on the user experience. New tech-
nologies such as parallel processing, stereo cameras, touch-screens, and smart phones have been
developed to meet market needs. However, managing the increasing hardware complexity is a chal-
lenging task for programmers and developers. Good design and programming methodologies are key
requirements to develop attractive and cost-effective solutions.

YVision [22, 21] is a powerful software composition framework, especially targeted at the develop-
ment of multimedia and interactive applications. The whole package ensembles several state-of-the-art
technologies such as 3D physics engine, computer vision and image processing algorithms, augmented
reality, and automatic parallelization of independent tasks. The modular nature of YVision offers auto-
matic thread handling, through Task Parallel Library integration. One does not have to worry about
concurrency or coordination in multi-core systems as all this complexity is automatically managed. To
tackle the challenges posed by the new multimedia interactive applications, the core of YVision is based
on Behavior Trees [16], a programming paradigm successfully used to manage the artificial intelligence
engine of video games. The current release includes several kinds of video input devices (webcams,
ethernet cameras, capture boards), Human Interface Devices (such as mice, keyboards, joysticks, Ar-
duinos or any other device that complies to the HID specification) and the Wiimote.

Windows Communication Foundation [19] is used in YVision as the medium for communication.
WCF is designed using service oriented architecture principles to support distributed computing where
services have remote consumers. Clients can consume multiple services; services can be consumed by
multiple clients. Services are loosely coupled to each other. A WCF client connects to a WCF service
via an Endpoint. Each service exposes its contract via one or more endpoints. An endpoint has an
address (which is a URL specifying where the endpoint can be accessed) and binding properties that
specify how the data will be transferred. Binding specifies what communication protocols are used to
access the service, whether security mechanisms are to be used, and the like. WCF includes predefined
bindings for most common communication protocols such as SOAP over HTTP, SOAP over TCP, SOAP
over UDP, and SOAP over Message Queues.

Objects and behaviors are the basic elements which compose an application. The objects are self-
containing and autonomous identities with different properties and characteristics. The interactions
between different objects are encoded in the behaviors. A common interface promotes the behavior
modularity and code reuse. Behaviors are composed hierarchically in a tree, where the leaves are
reusable actions or conditions. Hierarchical logic allows the management of the complexity of the ob-
jects behaviors.

The YVision capabilities in parallel data-fusion and integration of different input devices as well as
combining the different vectors that constitute a robot have proven to be befitting in the Santander

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

14

Headquarters’ Robot visitor guide project, from YDreams. Hence, YVision is a strong alternative to the
other robotic frameworks with clear advantages in modeling the robot behavior.

The framework provides an API based on XML and .NET languages. Thus, it is compatible with
several platforms such as Windows, Mac OS X, iPhone, Android and WP7.

The libraries are not open-source but are free to use.

4 Comparison Criteria and Evaluation

Previously, we presented some of the most used robotic software frameworks. In this section, we will
identify and describe the framework features that are important for the FROG project and compare the
frameworks with respect to those criteria.

The following features are important:

• OS compatibility - The OS running in the robot can either facilitate or hinder the software devel-
opment and the integration with the remaining hardware. The portability to mobile OS, such as
Android and iOS, is also an important factor.

• Programming language - The programming language should be such that it simplifies the interop-
erability of the robot software. By adopting a modern language that efficiently manages resources
such as memory, we reduce the development time and increase the software performance.

• Communication domain - The communication domain covered by a given framework will determine
whether application objects will be able to seamlessly exchange data (in the same or different
machines) out of the box, or will have to resort to external communication facilities. The former
is quite desirable, in order not to have to invest development effort in this essential but basic
functionality. On the other hand, integration of multiple frameworks might be easier if all of them
are devoid of remote communication capabilities, so that a common communication system could
be developed for all of them.

• Connection topology - The connection topology will let us know how data is exchanged between
application objects. Having a star topology (all the data traversing a central node) might be good
for one-to-many transmissions of small amounts of data, while having peer-to-peer connectivity
will allow for higher bandwidth without bottlenecks.

• Control topology - The way the connection topology is controlled in the framework is important
in order to quantify the flexibility of that topology. Frameworks with central nodes tend to greatly
simplify the access to their services, usually managing it automatically, but a dedicated application
object with a special role (the central node) is required. Frameworks free of the formal central
node requirement will ultimately rely either on external servers for some purposes (DNS for name
resolution, for example) or on static, preexisting configurations (such as hard-coded addresses).

• Communication paradigms provided - The different paradigms provided by the framework for the
application objects to use will be useful in different scenarios. The service-oriented paradigm is
perfect for transaction-like communications, while the publish/subscribe one tightly suits sensor
data broadcasting. It could be said in short that the more communication paradigms available
within one frame, the better.

• Underlying transport. Ultimately, there must be a transport allowing data exchange between appli-
cation processes. Each transport and protocol has different properties regarding robustness, over-
head, etc., which need to be considered in the design phase. Whether the framework uses sock-
ets, shared memory, files, signals, message queues, pipes, message passing, memory-mapped
file, or some combination, will be taken into account.

• Built-in simulator - Since the FROG project includes the development of a 3D simulator, this cri-
terion is not crucial. Nevertheless, the existence of such simulator is always an advantage and it
can be useful in the initial phase of FROG while the project simulator has not yet been developed.

• Distribution license - Software can be released under different licenses. Some licenses, even
being open-source licenses, can pose limitations on the commercialization of derived products.
For further details, see Appendix 6.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

15

• Last update - This criterion indicates whether the framework development is still active. Choosing
an abandoned framework can be highly disadvantageous, as it may rapidly become outdated and
limit further updates to the robot.

• Support quality - This criterion is indicative of the assistance that one could obtain from the devel-
opers and from the rest of the community to solve any questions that might arise.

• Existence of a discrete event system - A compact and flexible discrete event system is crucial
for the project success, because it will allow us to model and to encode in a perceptible way the
complex behavior of a robot such as the FROG.

• Available drivers - The existence of device drivers facilitate the configuration and simplify the
change of sensors and actuators. To evaluate this criterion we consider the existence of drivers
for laser range finders (Laser), inertial measurement unities (IMU), and cameras (Cam.).

• Available algorithms - The existence of already developed algorithms will simplify the development
phase of the FROG robot. It will allow component testing from the early beginning of the project
and the comparison between the already existing algorithms and the new ones developed for the
FROG project. We divide this criterion into localization algorithms (Loc.), local path planners (L.P.),
global path planners (G.P.), and motion control (Motion).

• Image rendering and Audio - The robot guide developed for FROG has to display exciting informa-
tion about the points of interest of the historical sites. To that end, the robot needs to have image
rendering (Rend.) and audio capabilities (Audio) in order to play sound and display information.

• Augmented Reality - One of the most interesting characteristics of FROG is the symbiosis between
the mobile robot world and the augmented reality world. Interactive augmented reality overlay
capabilities experience and increase knowledge transfer as information is offered through multi-
sensory interaction

• Physics Engine - The existence of a physics real-time engine is useful for remote visualization, as
it will allow us to propagate the robot position and attitude when there is delayed communications.
Moreover, it might be useful to develop a simulation environment, and to endow the augmented
reality objects and the natural user interface with physical characteristics, such as velocity, inertial,
drag, etc..

• Statistical Tools - The robot will receive a large amount of data that are required for navigation,
people detection, and emotion detection. This data needs to be processed in order to extract
useful information. For instance, for people detection, it is required to employ a statistical pattern
matching technique for time-varying data.

• Marker Tracking - Detection and tracking of markers can be used to increase the precision required
for the augmented reality component.

• Face Tracking and Full Body Tracking - This is a key requirement to enable the development
of algorithms for identification of human communicative cues including facial expressions, gaze,
head nods and shakes, body gestures and postures.

Tables 1 to 51 summarize the characteristics of each framework. In Table 1 the frameworks are
compared with respect to OS compatibility and programming language. In Table 2 the frameworks
are compared with respect to communication domain, connection topology, control topology, commu-
nication paradigms provided and underlying transport. In Table 3 the comparison is done with respect
to simulation capabilities, license, date of the last update, support quality and existence of a discrete
event system. The characteristics of the frameworks with respect to control algorithms and drivers are
presented in Table 4. Finally, Table 5 summarizes some of the framework features, namely, image ren-
dering, sound player, augmented reality, physics engine, statistical tools, and tracking of markers, faces
and full body.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

16

Figure 2: Venn diagram for the operative systems the frameworks can interact with. A framework in
the "Linux" category implies compatibility with any of Ubuntu, Arch, Fedora, Gentoo, Suse, Slackware,
Debian, Xenomai. A framework in the "Win" category implies compatibility with any of WindowsXP,
Win7, WinCE. A framework in the "Mac" category implies compatibility with any of Mac OS X, BSD. A
framework in the "Solaris" category implies compatibility with any Solaris version.

5 Discussion

In this section, we will discuss the advantages and disadvantages of each software framework. The
FROG project goes beyond the classical mobile robot design. By developing a robot able to share the
same space as tourists, capable of perceiving human emotions, via verbal and non verbal behaviors,
and endowed with an engaging personality and social behavior, we will significantly expand the frontier
of human-robot interaction and collaboration.

FROG is a multidisciplinary project, which will embrace a wide range of areas of knowledge. To
accomplish the project goals on its different vectors, specific tools are required. Those are provided by
different frameworks. Thus, in this study we compare software frameworks targeted at different areas,
robotics, augmented reality, and game industry.

The characteristics and available tools of each framework are presented in the form of tables (Ta-
bles 1 to 5) for a clear comparison2. Table 1 compares the frameworks with respect to OS compatibility
and programming language. If it is required that in the same system more that one software library
coexist, it is important to guarantee that they are all compatible with a common OS. In addition, it would
greatly benefit further extensions and reuse of the developed software, if the software framework were
compatible with a wide variety of OS. The augmented reality frameworks, as well as, the Unity and the
YVision frameworks are the ones that are supported in more OS. In particular, they are supported in
mobile platforms, which are nowadays experiencing an impressive expansion. With respect to devolving
language, most of the frameworks are compatible with C++, and some also with Python. The language
C# can be used to develop applications using Orca, MRDS, Unity, and YVision. This language offers
advantages such as being compiled to an intermediate language (CIL) independently of the target ar-
chitecture and OS, automatic garbage collection, pointers no longer needed (but optional), definition of
classes and functions can be done in any order, and applications can be executed within a restricted
sandbox. MRDS and Unifeye provide visual programming tools to simplify the development process.

Table 2 compares the frameworks with respect to communication domain, connection topology, con-
trol topology, communication paradigms provided and underlying transport. For many robotic projects
the topology and communication protocols are a key design parameter. For the FROG project it does
not have the same importance, as it is a centralized system. However, it could be important to a future

1All tables can be found at the end of the document
2All tables can be found at the end of the document

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

17

Figure 3: Venn diagram for the languages in which the frameworks can be accessed. Only four main-
stream languages are shown, namely c/c++, java, python and any of the .Net family. This does not imply
the frameworks APIs being limited to the languages shown, some being also available in TCL, XML, etc.
Those frameworks with APIs solely available in other languages (such as Lua) are shown outside every
bubble.

expansion of the project, such as, having several interconnected robots in the same site.
In Table 3 several other characteristics of the frameworks are displayed, namely, compatibility with

simulator, release license, date of the last update, quality of the support and implementation of a discrete
event system. Player, ROS, Carmen, URBI and GenoM are compatible with simulators. Unity and
YVision provide a physics engine that easily allows the conception of a simulation environment. Most
frameworks have release licenses incompatible with the development of commercial applications. Only
ROS and GenoM are released under the BSD license, which is a permissive open-source software
license compatible with its use in commercial products. The YVision framework is free to use and the
YDreams developers have an extensive experience in using it. From the "Last-Update" column we
can conclude that CARMEN, CLARAty, and MOOS are in an idle state, and in addition, they provide
poor support, which are relevant shortcomings of these frameworks. The value of a discrete event
system to complex applications, such as FROG, is evident. The frameworks ROS, CARMEN, MRDS,
and CLARAty allow the user to construct finite state machines, while URBI, ERSP, and GenoM, provide
an event-based programming language, tools for creation of behavior networks, and an event-driven
supervisor, respectively. YVision provides a different discrete event system, which is based on behavior
trees. This approach follows the latest trend in artificial intelligence for computer games, which is in
the process of being adopted by the robotics community. This will result in a system architecture that
can generate the appropriate behavior at any time, including in situations where information from input
analysis is partial or missing completely, which might be a common case in the outdoor environment in
which the FROG robot will operate.

Table 4 compares the studied frameworks with respect to the number of available control algo-
rithms and device drivers. We conclude that YARP, OROCOS, URBI, MOOS, OpenJAUS, and naturally,
D’Fusion, Unifeye, and Unity do not provided any implementation of algorithms for localization, path
planning, and motion control. With respect to drivers, only Player, ROS, MRPT, and GenoM provide
drivers for laser range finders, inertial measurement unities and cameras. Orca, MRDS, and YVision
only offer drivers for some of these devices, and the remaining frameworks do not provide drivers for
any of them.

Finally, Table 5 provides terms of comparison related to multi-media and augmented reality applica-
tions. Clearly, the robotic frameworks are not targeted at these applications which, on the other hand,
are the core of D’Fusion and Unifeye. These facts are evident in the table. Despite that, Player and
ROS provide some tools for augmented reality using external libraries. The game engine Unity provides
rendering, audio support, as well as, a physics engine. The YVision is the only framework which has
all the features present in this table. The great advantage of YVision comes from the conjugation and

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

18

articulation of several key features and tools for the FROG project.
The architecture of FROG can be conceptually divided into three different layers, the low-level con-

trol algorithms layer (comprising motor control, safety-stop, low-lever sensors abstraction layer), the
middle-level control algorithms (comprising the navigation and localization systems), and the high-level
behavior and interactive layer responsible for emotion detection and human-robot interaction via aug-
mented reality tools.

After benchmarking several robotic frameworks, augmented reality frameworks, a game engine and
the multi-purpose framework YVision, we propose two different strategies to be adopted in FROG.

In the first, the ROS framework is adopted as the base for the development of the low-level control
layer and the middle-level control layer. Two other frameworks are suitable to be adopted for this pur-
pose, Player and GenoM. The differences in the features of these three alternatives are not substantial.
All three have good support of control algorithms and drivers, as well as good user support. The ROS
project is being adopted at quite a rate, and it expansion is not foreseen to decline in the coming years.
The implementation of the low-level control algorithms and the middle-level control algorithms using a
framework as ROS facilitate their dissemination and benchmarking among the scientific community.

On the other hand, ROS is not so suitable for multimedia application. Hence, the high-level behav-
ior and interactive layer have to be developed using other framework. Comparing D’Fusion, Unifeye,
Unity, and YVision, the latter is the one that better answers the project needs. This alternative requires
the development of a communication module that enables the exchange of information between ROS
and YVision. In this approach ROS can also double as the middleware communication opening the
opportunity to include several other frameworks that have bindings or integrate to ROS.

The idea behind the second alternative is to profit from the experience of YDreams and IDMind in
developing the robotic guest assistants for the Santander headquarters in Madrid, Spain, which are
based solely on YVision, and to pursue a similar strategy. The YVision capabilities will allow us to ad-
dress all areas of the robot, from the locomotion and navigation algorithms to the complex interaction
with visitors. Using the YVision as the base framework of all the FROG systems has several advan-
tages. It will avoid possible communications problems between ROS and YVision, and promote a better
integration and control over all the robot’s systems. Using the 3D physics engine we can develop an
advanced remote visualization system and a customized simulation environment especially developed
to answer the project needs. The behavior trees will allow us to manage the complexity of the robot
and tourists behaviors. YVision is developed by YDreams, so it is supported directly by the developers.
Finally, by adopting this alternative the portability between different OS will not be an issue.

6 Conclusions

In this survey, we have evaluated fourteen different frameworks with respect to a set for criteria of rec-
ognized interest for the FROG project. The main objectives of the FROG project were briefly described
and important features of the frameworks are identified. The studied frameworks were briefly described
and their relevant features compiled in tables. The software composition framework YVision is also in-
troduced and its main features are highlighted. Finally, we propose and discuss the advantages of two
alternative solutions to be adopted in the FROG project, one based on a two frameworks solution, ROS
and YVision, and other based solely on YVision.

Appendix

Terminology

This appendix describes the terminology adopted, especially the one employed when describing the
communication capabilities. Please note that while meaningful and hopefully sensible terms have been
chosen, the classification presented does not intend to be a complete or general taxonomy. It does,
nevertheless, serve the framework discrimination purposes of the present document.

• Communication domain

Local The communication methods used allow for comunication only between threads (shared
address space) or processes, but always in the same machine.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

19

Remote The communication methods used allow for comunication between threads and or pro-
cesses, running in the same or in a remote machine.

• Connection topology

Star All the data transfer traverses a central node
Peer-to-peer The data is transfered directly between peer nodes. Notice this is true even for

those frameworks where a central node is needed to establish/close the connections.

• How the services offered by the framewok are controlled

Central Node Some services provided by the framework rely on the existence of an specially
dedicated node.

External/Hard-Coded The framework directly relies on the existence of external servers (DNS,
for example) or resolution techniques (such as local hosts file, or address hard-coding) to
provide its services.

• Communication paradigms provided by a framework

None (point-to-point) The framework provides for the mechanisms to establish a direct link be-
tween two application objects. In general, before the communication establishment can be
initiated, both application objects must be up and running (time coupled). Once the direct link
has been established, every communication detail is up to them.

Service oriented The framework provides for the mechanisms in order to establish and regulate
a service oriented communication between two application objects, a la remote procedure
call. This paradigm allows one application object to provide well defined services to other
application objects. Service provider and service client may be tightly time-coupled (syn-
chronous operation), or mildly coupled (asynchronous operation, message passing).

Publish/Subscribe The framework provides for the mechanisms in order to allow the framework
clients to publish in (or subscribe to) messages feeds. This paradigm allows one application
object to act as a message producer (or consumer), independently of whether other appli-
cation objects are consuming (or producing) the data. Producer and consumer are loosely
coupled.

Software distribution licenses

Each license type gives the user and the developer different rights and restrictions. They can be tar-
geted at open-source software or at commercial software. Some of the most used open-source soft-
ware licenses are, the Apache License, Berkeley Software Distribution (BSD) License, the MIT License,
GNU General Public License (GPL), GNU Lesser General Public License (LGPL), and the GNU Affero
General Public License (AGPL). All open-source software licenses, allow the use for any purpose, the
distribution and the modification of the software, under specific restrictions. The Apache license, the
BSD license, and the MIT license are part of a class of open-source software licenses with minimal re-
quirements about how the software can be redistributed, not requiring modified versions of the software
to be distributed using the same license. Apache license is the longest of the three but it is more explicit
in its terms. The GPL restricts all the derived works to be distributed under the same license terms.
The LGPL apply the same restrictions as GPL on the programs governed under it, but it does not apply
these restrictions to other software that merely link with the program. The AGPL is a slightly modified
version of GPL and ensures the access to the source code of applications running on network servers.
Developers can also designate its software as Technology and Software Publicly Available (TSPA). This
license allows its distribution but explicitly forbids its use in any commercial application. For commercial
products there is the End-User License Agreement (EULA), which is a legal contract between the user
and author or publisher of the application. The EULA may differ from product to product and establishes
the legal limitation of use and distribution of the software. For further details on the different software
licenses, the reader is referred to [32].

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

20

Bibliography

[1] AS5684 JAUS service interface definition language. http://standards.sae.org/as5684a.

[2] CARMEN official website. http://carmen.sourceforge.net/.

[3] CLARAty official website. http://claraty.jpl.nasa.gov/man/overview/index.php.

[4] ERSP official website. http://www.evolution.com/products/ersp/.

[5] GenoM official website. http://www.openrobots.org/wiki/genom.

[6] Inter-Process Communication: A Reference Manual.

[7] Metaio Unifeye official website. http://www.metaio.com/software/sdk/.

[8] MOOS official website. http://www.robots.ox.ac.uk/ mobile/MOOS/wiki/.

[9] MRPT official website. http://www.mrpt.org/.

[10] OpenJAUS official website. http://openjaus.com/.

[11] Orca official website. http://orca-robotics.sourceforge.net/.

[12] OROCOS official website. http://www.orocos.org/.

[13] Player Project official website. http://playerstage.sourceforge.net/.

[14] ROS official website. http://www.ros.org/.

[15] Total Immertion D’Fusion official website. http://www.t-immersion.com/.

[16] Understanding behavior trees. http://aigamedev.com/open/article/bt-overview/.

[17] Unity official website. http://unity3d.com/.

[18] Urbi official website. http://www.urbiforge.org/.

[19] Windows communication foundation official website. http://msdn.microsoft.com/en-us/netframework/aa663324.aspx/.

[20] YARP official website. http://eris.liralab.it/yarp/.

[21] YVision official website. www.yvision.com/.

[22] A. Almada, G. Lopes, A. Almeida, J. Frazao, and N. Cardoso. Yvision: A general purpose software
composition framework. In Human-Computer Interaction New Trends 13th International Confer-
ence HCI, pages 779–788, 2009.

[23] Jean-Christophe Baillie. Urbi: towards a universal robotic low-level programming language. In
Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on,
Aug. 2005.

[24] Jean-Christophe Baillie. A reusable software framework for rover motion control. In International
Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, CA, USA,
Feb. 2008.

21

[25] Jean-Christophe Baillie, Akim Demaille, Quentin Hocquet, Matthieu Nottale, and Samuel Tardieu.
The urbi universal platform for robotics. In Workshop Proceedings of SIMPAR 2008 Intl. Conf. on
Simulation Modelling and Programming for Autonomous Robots, Venice, Italy, Nov. 2008.

[26] A. Brooks, T. Kaupp, A. Makarenko, A. Orebäck, and S. Williams. Towards component-based
robotics. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005),
2005.

[27] Herman Bruyninckx. Open robot control software: the orocos project. In IEEE International Con-
ference on Robotics and Automation, Seoul, Korea, May 2001.

[28] Jose Claraco. Development of Scientific Applications with the Mobile Robot Programming Toolkit.
Oct. 2010. (online: http://www.mrpt.org/downloads/mrpt-book.pdf).

[29] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-lived robot genes. Robot. Auton.
Syst., 56(1):29–45, Jan. 2008.

[30] S. Fleury, M. Herrb, and R. Chatila. GenoM: A tool for the specification and the implementation
of operating modules in a distributed robot architecture. In International Conference on Intelligent
Robotics and Systems, Grenoble, France, 1997.

[31] Brian P. Gerkey, Richard T. Vayghan, and Andrew Howard. The player/stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings of the International Conference on
Advanced Robotics, Jun. 2003.

[32] Andrew Laurent. Understanding Open Source and Free Software Licensing. O’Reilly Media, Aug
2004.

[33] A. Makarenko, A. Brooks, and T. Kaupp. Orca: Components for robotics. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2006), 2006.

[34] A. Mallet, S. Fleury, and H. Bruyninckx. A specification of generic robotics software compo-
nents: future evolutions of GenoM in the Orocos context. In International Conference on Intelligent
Robotics and Systems, Lausanne, Switzerland, 2002.

[35] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. YARP: Yet Another Robot Platform. Interna-
tional Journal on Advanced Robotics Systems, 3(1):43–48, 2006.

[36] M. Montemerlo, N. Roy, and S. and Thrun. Perspectives on standardization in mobile robot pro-
gramming: the carnegie mellon navigation (CARMEN) toolkit. In Intelligent Robots and Systems,
2003. (IROS 2003), 2003.

[37] I.A. Nesnas. Software Engineering for Experimental Robotics, chapter The CLARAty Project: Cop-
ing with Hardware and Software Heterogeneity. Springer Tracts on Advanced Robotics. Springer,
2006.

[38] I.A. Nesnas. CLARAty: A collaborative software for advancing robotic technologies. Adelphi, MD,
USA, Jun. 2007. NASA Science and Technology Conference.

[39] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,
and Andrew Y. Ng. ROS: an open-source robot operating system. In ICRA Workshop on Open
Source Software, 2009.

[40] Diego Santini and Walter Lages. An open control system for manipulator robots. In 20th Interna-
tional Congress of Mechanical Engineering, Seoul, Korea, Nov. 2009.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

22

Comparison Tables

Table 1: Comparison of robotic frameworks with respect to OS compatibility and
programming language.

Software OS Compatibility Programming Language
Player Win, Mac OS X, Solaris, Linux C, C++, Python and Ruby (client

nodes in any lang supporting TCP
sockets)

ROS Ubuntu (Experimental in Windows,
OS X, Arch, Fedora, Gentoo, Open-
SUSE, Slackware, Debian, Android)

C++, Phyton and Lisp (client nodes
in any lang supporting TCP sockets)

YARP Win, Mac OS X, Linux(based on
Cmake in order to be OS portable)

C, C++

CARMEN Linux C, but provides Java support
OROCOS Win, Mac OS X, Linux C++

Orca Linux, (interfaces, core libraries,
and some components compile in
Win XP, based on CMake/Ice com-
bination)

Java, C#, C++

MRDS Win 7, XP, (CE5.0 and CE 6.0 on
ver. 2008 R2)

C#, visual

URBI Win, Mac OS X, Linux UObject distributed C++ (urbiscript)
MRPT Win, Linux (limited functionalities on

Mac OS X)
C++

MOOS Mac OS X, Linux C++
OpenJAUS Win, Linux C++

ERSP Win, Linux Python, visual
CLARAty Mac OS X, Solaris, Linux C++
GenoM Linux, BSD, Xenomai C, tcl, XML, open-prs

D’Fusion Windows (PC and mobile), Mac OS
X and Symbian

Lua

Unifeye Windows (PC and mobile), Mac OS,
iPhone and Symbian

C++, visual programming

Unity Win, Mac OS X, Xbox 360, PlaySta-
tion 3, Wii, iPad, iPhone, Android

C#

YVision Win, Mac OS X, iPhone, Android,
WP7

XML and .NET languages

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

23

Table 2: Comparison of robotic frameworks with respect to communication domain, connection
topology, control topology, communication paradigms provided and underlying transport.

Control Paradigms

Framework Domain To
po

lo
gy

C
en

tra
lN

od
e

E
xt

er
na

l/H
ar

d

P
ub

lis
h/

S
ub

sc
rib

e

S
er

vi
ce

O
rie

nt
ed

Po
in

t-t
o-

Po
in

t

Transport
Orca Remote P2P 1 TCP/IP, UDP
YARP Remote P2P - TCP/IP, UDP, shared

memory, pipes 2

YVision Remote P2P - TCP/IP, UDP
ROS Remote P2P - TCP/IP
CARMEN Remote P2P - TCP/IP
URBI Remote P2P - N.F3 TCP/IP
MRDS Remote P2P N.F - TCP/IP
MRPT Remote P2P - - - Sockets
OpenJAUS Remote P2P - N.F TCP/IP, UDP
GenoM Remote P2P - - - TCP/IP, shared mem-

ory
Player Remote Star - - - TCP/IP
MOOS Remote Star - - - TCP/IP
CLARAty Remote N.F N.F N.F N.F N.F TCP/IP, UDP, shared

memory, pipes2

OROCOS Local - - - - Lockfree buffers, mes-
sage queue

ERSP Local - - - - N.F
D’Fusion n/a4 - - - - - - -
Unifeye n/a - - - - - - -
Unity n/a - - - - - - -
1 Only available when using the central node control topology.
2 Uses ACE library, which includes many more transports.
3 Not found.
4 Not applicable. These are monolithic applications, with some plugin support.

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

24

Table 3: Comparison of robotic frameworks with respect to simulation capabilities, license, date of
the last update, support quality, discrete event system.

Software Simulator License Last Update Support Disc. Event
Syst.

Player Yes (2D
and 3D)

GPL, LGPL 25-Nov-
2010

Forum and documen-
tation - good support-
ing community

N.F.1

ROS Yes (2D
and 3D)

BSD 2011 Forum and documen-
tation - good support-
ing community

Hierarchical
state ma-
chines
(SMACH)

YARP No GPL, some
components
LGPL

21-Sep-
2011

Mailing list and docu-
mentation - good sup-
porting community

N.F.

CARMEN Yes (2D) GPL Oct-2008 Limited State ma-
chines

OROCOS No GPL, LGPL 2011 Wikipages and forum State ma-
chines

Orca No GPL, LGPL 10-Nov-
2010

Good documentation,
but no forum

N.F.

MRDS Yes (3D) Commercial 17-Sep-
2011 (v. 4
beta) 20-
May-2010
(v. 2008 R3)

Professional support State ma-
chines

URBI Can be
used with
Webots

AGPL v3 17-Mar-
2011

Forum and documen-
tation

Event based
prog. lang.

MRPT No GPL v3 4-Jun-2011 Forum and documen-
tation

N.F.

MOOS No (unknown) 27-Jul-2010 Some documentation,
but no forum

N.F.

OpenJAUS No Commercial
(license
2ke)

(unknown) Forum (few users) and
some documentation

N.F.

ERSP No Commercial (unknown) Professional support Behavior
networks

CLARAty No TSPA 2008 Very limited State ma-
chine

GenoM Compatible
with Gdhe

BSD 26-Apr-2011 Online documentation
but no forum and no
mailing list

Event-driven
supervisor

D’Fusion No Commercial (unknown) Professional support (unknown)
Unifeye No Commercial (unknown) Professional support (unknown)
Unity 3D

physics
engine

Commercial 26-Jul-2011 Professional support Available
as plug-
ins (e.g.
behavior
trees)

YVision 3D
physics
engine

not open-
source but
free to use

Out-2011 Tutorials and a forum Behavior
trees

1 N.F. - not found

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

25

Table 4: Comparison of robotic frameworks with respect to control algorithms and drivers.
Control algorithms Drivers

Localiz.1 Local P.P.2 Global P.P.3 Motion Control Laser4 IMU Camera
Player
ROS
YARP N.F.5 N.F. N.F. N.F. N.F. N.F.
CARMEN N.F. N.F. N.F. N.F.
OROCOS N.F. N.F. N.F. N.F. N.F. N.F. N.F.
Orca N.F. N.F. N.F.
MRDS N.F. N.F. N.F. N.F.
URBI N.F. N.F. N.F. N.F. N.F. N.F. N.F.
MRTP
MOOS N.F. N.F. N.F. N.F. N.F. N.F. N.F.
OpenJAUS N.F. N.F. N.F. N.F. N.F. N.F. N.F.
ERSP N.F. N.F. N.F. N.F.
CLARAty N.F. N.F. N.F.
GenoM
D’Fusion n/a6 n/a n/a n/a n/a n/a n/a
Unifeye n/a n/a n/a n/a n/a n/a n/a
Unity n/a n/a n/a n/a n/a n/a n/a
YVision N.F. N.F.
1 Localization
2 Local path planning
3 Global path planning
4 Laser range finder
5 N.F. - resource not found
6 n/a - not applicable

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

26

Table 5: Comparison of robotic frameworks with respect to image rendering, sound player,
augmented reality, physics engine, statistical tools, and tracking of markers, faces and full
body.

Rend.1 Audio A.R.2 Phy. Eng.3 Stat.4 Marker T.5 Face T.6 Body T.7

Player 8 8 N.F.9 N.F. N.F. N.F.
ROS 10 N.F.
YARP N.F. N.F. N.F. N.F.
CARMEN N.F. N.F. N.F. N.F. N.F. N.F. N.F. N.F.
OROCOS N.F. N.F. N.F. N.F. N.F. N.F. N.F. N.F.
Orca N.F. N.F. N.F. N.F. N.F. N.F. N.F. N.F.
MRDS N.F. N.F. N.F. N.F. N.F. N.F. N.F.
URBI N.F. N.F. N.F. N.F.
MRTP N.F N.F. N.F. N.F. N.F. N.F.
MOOS N.F. N.F. N.F. N.F. N.F. N.F. N.F. N.F.
OpenJAUS N.F. N.F. N.F. N.F. N.F. N.F. N.F. N.F.
ERSP N.F. N.F. N.F. N.F. N.F. N.F. N.F.
CLARAty N.F. N.F. N.F. N.F. N.F. N.F. N.F. N.F.
GenoM N.F. N.F. N.F. N.F. N.F. N.F. N.F.
D’Fusion N.F. N.F. N.F.
Unifeye N.F. N.F. N.F.
Unity N.F. N.F. N.F. N.F. N.F.
YVision
1 Image rendering and display
2 Augmented reality
3 Physics Engine
4 Tools for Statistical analysis
5 Marker tracking
6 Face tracking
7 Full body tracking
8 Using ARDev library
9 N.F. - resource not found
10 Using ARToolkit

FROG - FP7 STREP nr. 288235
D5.1: Iterative Integration and Evaluation Report

27

