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Chapter 1

Introduction

The main concept of FROG is to deliver a robust autonomous mobile robot that uses
innovative design and behavior to engage visitors in the exploration of outdoor sites.
The robot’s human-aware behaviors and interaction will be developed with the specific
measurable goals to enable user engagement and interest in the resources the site has to
offer, knowledge transfer, ease of use and enjoyability.

FROG uses tour guide strategies derived from contextual observation studies in or-
der to engage the visitor in learning more about the points ofinterests they encounter.
FROG will adapt its tour guide strategy behaviors based on the visitors’ implicit affec-
tive feedback (e.g. attention and interest). Also, FROG is planned to know whether
visitors are still moving, following or have stopped and whether they are interested and
are paying attention. By detecting head pose and viewing direction FROG also knows
what point of interest visitors are focused on.

The task in this work package aims further to develop a set of visual methods for de-
tecting human affective states including users’ positive and negative reactions to FROG
robot and their overall level of interest and engagement in the current interaction with
FROG. Detection is based on the state of the art in cognitive sciences and based on
morphological and temporal correlations. For this purpose, facial landmarks as well as
face pose were used. The method for facial landmark detection as well as for face pose
estimation was developed for FROG and it was presented in work package 3.1 (FROG
tracker). Firstly, interest annotations were obtained by annotated thousands of images
based on FROG data. Secondly, temporal alignment and fusionof multiple annota-
tions in time was performed. Finally, the annotations were used for training models for
interest prediction. These tree main steps are presented indetail in the next chapters.
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Chapter 2

Obtaining Interest Annotations

The interest annotations obtained in a continuous scale where obtained by providing
the annotators with the following instructions:

• Interest Rating in [−1,−0.5): the subject isdisinterested in the interaction, can
be mostly passive or appear bored, does not follow the robot and possibly wants
to stop the session.
• Interest Rating in [−0.5, 0): the subject appears passive, possibly hesitating to

respond. The subject appearsindifferent andunmotivated.
• Interest Rating approx. 0: the subject seems to follow the interaction with the

interaction partner, but it can not be recognized if he/she is interested. The subject
is neutral.
• Interest Rating in (0, 0.5]: The subject seems eager follow the interaction. The

subject isinterested.
• Interest Rating in (0.5, 1]: The subject seems pleased to participate in the inter-

action, can show some signs ofenthusiasm, is expressive in terms of (positive)
emotions (e.g., laughing,).

The interest annotations where quantised as follows:

• No Interest (Class 0)Interest Rating in [−1, 0): Disinterest or indifference, the
subject is not interested in the interaction and is unmotivated to participate, pos-
sibly wants to terminate the interaction or is neutral.

• Interested (Class 1)Interest Rating in [0, 0.5): The subject seems interested in the
interaction and appears eager to follow.

• Highly Interested (Class 2)Interest Rating in [0.5, 1]: The subject appears pleased
to participate in the interaction, can show signs of enthusiasm and is expressive in
terms of positive emotions (e.g., laughing).
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Chapter 3

Analysis and Fusion of Continuous
Sets of Annotations

Fusing multiple continuous expert annotations is a crucialproblem in machine learn-
ing and computer vision, particularly when dealing with uncertain and subjective tasks
related to affective behaviour. Inspired by the concept of inferring shared and individ-
ual latent spaces in Probabilistic Canonical Correlation Analysis (PCCA), we used a
novel, generative model that discovers temporal dependencies on the shared/individual
spaces (Dynamic Probabilistic CCA, DPCCA). In order to accommodate for temporal
lags, which are prominent amongst continuous annotations,we further introduce a la-
tent warping process, leading to the DPCCA with Time Warpings (DPCTW) model.
Finally, we used two supervised variants of DPCCA/DPCTW which incorporate inputs
(i.e. visual or audio features), both in a generative (SG-DPCCA) and discriminative
manner (SD-DPCCA). We show that the resulting family of models (i) can be used as
a unifying framework for solving the problems of temporal alignment and fusion of
multiple annotations in time, (ii) can automatically rank and filter annotations based
on latent posteriors or other model statistics, and (iii) that by incorporating dynamics,
modelling annotation-specific biases, noise estimation, time warping and supervision,
DPCTW outperforms state-of-the-art methods for both the aggregation of multiple, yet
imperfect expert annotations as well as the alignment of affective behaviour.

We initially present the first generalisation of PCCA to learning temporal dependen-
cies in the shared/individual spaces (Dynamic PCCA, DPCCA). By further augmenting
DPCCA with time warping, the resulting model (Dynamic PCCA with Time Warpings,
DPCTW) can be seen as a unifying framework, concisely applied to both problems. The
individual contributions of this work can be summarised as follows:

• In comparison to state-of-the-art approaches in both fusion of multiple annota-
tions and sequence alignment, our model bears several advantages. We assume
that the “true” annotation/sequence lies in a shared latentspace. E.g., in the prob-
lem of fusing multiple emotion annotations, we know that theexperts have a com-
mon training in annotation. Nevertheless, each carries a set of individual factors
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which can be assumed to be uninteresting (e.g., annotator/sequence specific bias).
In our model, individual factors are accounted for within anannotator-specific
latent space, thus effectively preventing the contamination of the shared space by
individual factors. Most importantly, we introduce latent-space dynamics which
model temporal dependencies in both common and individual signals. Further-
more, due to the probabilistic and dynamic nature of the model, each annota-
tor/sequence’s uncertainty can be estimated for eachsample, rather than for each
sequence.

• In contrast to current work on fusing multiple annotations,we use a novel frame-
work able to handle temporal tasks. In addition to introducing dynamics, we also
employ temporal alignment in order to eliminate temporal discrepancies amongst
the annotations.

• We present an elegant extension of DTW-based sequence alignment techniques
(e.g., Canonical Time Warping, CTW) to a probabilistic multiple-sequence set-
ting. We accomplish this by treating the problem in a generative probabilistic
setting, both in the static (multiset PCCA) and dynamic case(Dynamic PCCA).

3.1 Multiset Probabilistic CCA

We consider the probabilistic interpretation of CCA, introduced by Bach & Jordan
[2] and generalised by Klami & Kaski [10]1. In this section, we present an extended
version of PCCA [10] (multiset PCCA2) which is able to handle any arbitrary number
of sets. We consider a collection of datasetsD = {X1,X2, ...,XN}, with eachXi ∈
R

Di×T whereDi is the dimensionality andT the number of instances. By adopting the
generative model for PCCA, the observation samplen of setXi ∈ D is assumed to be
generated as

xi,n = f(zn|Wi) + g(zi,n|Bi) + εi, (3.1)

whereZi = [zi,1, . . . , zi,T ] ∈ R
di×T andZ = [z1, . . . , zT ] ∈ R

d×T are theindependent
latent variables that capture the set-specific individual characteristics and the shared sig-
nal amongst all observation sets, respectively.f(.) andg(.) are functions that transform
each of the latent signalsZ andZi into the observation space. They are parametrised by
Wi andBi, while the noise for each set is represented byεi, with εi⊥εj , i 6= j. Simi-
larly to [10], zn, zi,n andεi are considered to be independent (both over the set and the
sequence) and normally distributed:

zn, zi,n ∼ N (0, I), εi ∼ N (0, σ2
nI). (3.2)

By consideringf andg to be linear functions we havef(zn|Wi) = Wizn andg(zi,n|Bi) =
Bizi,n, transforming the model presented in Eq. 3.1, to

xi,n = Wizn +Bizi,n + εi. (3.3)

1[10] is also related to Tucker’s inter-battery factor analysis [20, 4]
2In what follows we refer to multiset PCCA as PCCA.



Learning the multiset PCCA can be accomplished by generalising the EM algo-
rithm presented in [10], applied to two or more sets. Firstly, P (D|Z,Z1, . . . ,ZN ) is
marginalised over set-specific factorsZ1, . . . ,ZN and optimised on eachWi. This
leads to the generative modelP (xi,n|zn) ∼ N (Wizn,Ψi), whereΨi = BiB

T
i + σ2

i I.
Subsequently,P (D|Z,Z1, . . . ,ZN) is marginalised over the common factorZ and then
optimised on eachBi andσi. When generalising the algorithm for more than two sets,
we also have to consider how to (i) obtain the expectation of the latent space and (ii)
provide stable variance updates for all sets.

Two quantities are of interest regarding the latent space estimation. The first is the
common latent space given one set,Z|Xi. In the classical CCA this is analogous to
finding the canonical variables [10]. We estimate the posterior of the shared latent
variableZ as follows:

P (zn|xi,n) ∼ N (γixi,n, I− γiWi),

γi = WT
i (WiW

T
i +Ψi)

−1. (3.4)

The latent space given then-th sample fromall sets inD, which provides a better
estimate of the shared signal manifested in all observationsets is estimated as

P (zn|x1:N,n) ∼ N (γx1:N,n, I− γW),

γ = WT (WWT +Ψ)−1, (3.5)

while the matricesW, Ψ andXn are defined asWT = [WT
1 ,W

T
2 , . . . ,W

T
n ], Ψ as

the block diagonal matrix ofΨi=1:N
3 andxT

1:N,n = [xT
1,n,x

T
2,n, . . . ,x

T
1:N,n]. Finally, the

variance is recovered on the full model,xi,n ∼ N (Wizn +Bizi,n, σ
2
i I), as

σ2
i =tr(S−XE[ZT |X]CT

−CE[Z|X]XT −CE[ZZT |X]CT )i
T

Di

, (3.6)

whereS is the sample covariance matrix,B is the block diagonal matrix ofBi=1:N ,C =
[W,B], while the subscripti in Eq. 3.6 refers to the i-th block of the full covariance
matrix. Finally, we note that the computational complexityof PCCA for each iteration
is similar to deterministic CCA (cubic in the dimensionalities of the datasets and linear
in the number of samples). PCCA though also recovers the private space.

3.2 Dynamic PCCA (DPCCA)

The PCCA model described in Sec. 3.1 exhibits several advantages when compared
to the classical formulation of CCA, mainly by providing a probabilistic estimation of
a latent space shared by an arbitrary collection of datasetsalong with explicit noise

3For brevity of notation, we use1 : N to indicate elements[1, . . . , N ], e.g., X1:N ≡
[X1,X2, . . . ,XN ]



and private space estimation. Nevertheless, static modelsare unable to learn temporal
dependencies which are very likely to exist when dealing with real-life problems. In
fact, dynamics are deemed essential for successfully performing tasks such as emotion
recognition, AU detection etc. [23].

Motivated by the former observation, we use a dynamic generalisation of the static
PCCA model introduced in the previous section, where we now treat eachXi as a tem-
poral sequence. For simplicity of presentation, we introduce a linear model4 where
Markovian dependencies are learnt in the latent spacesZ andZi. In other words, the
variableZ models the temporal, shared signal amongst all observationsequences, while
Zi captures the temporal, individual characteristics of eachsequence. It is easy to ob-
serve that such a model fits perfectly with the problem of fusing multiple annotations,
as it does not only capture the temporal shared signal of all annotations, but also mod-
els the unwanted, annotator-specific factors over time. Essentially, instead of directly
applying the doubly independent priors toZ as in Eq. 3.2, we now use the following:

p(zt|zt−1) ∼ N (Azzt−1,VZ), (3.7)

p(zi,t|zi,t−1) ∼ N (Azizi,t−1,VZi
), n = 1, . . . , N, (3.8)

where the transition matricesAz andAzi model the latent space dynamics for the shared
and sequence-specific space respectively. Thus, idiosyncratic characteristics of dynamic
nature appearing in a single sequence can be accurately estimated and prevented from
contaminating the estimation of the shared signal.

The resulting model bears similarities with traditional Linear Dynamic System (LDS)
models (e.g. [17]) and the so-called Factorial Dynamic Models, c.f. [5]. Along with
Eq. 3.7,3.8 and noting Eq. 3.3, the dynamic, generative model for DPCCA5 can be
described as

xi,t = Wi,tzt +Bizi,t + εi, εi ∼ N (0, σ2
i I), (3.9)

where the subscriptsi andt refer to thei-th observation sequence timestept respectively.

3.2.1 Inference

To perform inference, we reduce the DPCCA model to a LDS6. This can be ac-
complished by defining a joint spacêZT = [ZT ,ZT

1 , . . . ,Z
T
N ], Ẑ ∈ R

d̂×T whered̂ =
d +

∑N

i di with parametersθ = {A,W,B,Vẑ, Σ̂}. Dynamics in this joint space are
described asXt = [W,B]Ẑt + ε, Ẑt = AẐt−1 + u, where the noise processesε andu

4A non-linear DPCCA model can be derived similarly to [9, 6].
5The model of Raykar et al. [16] can be considered as a special case of (D)PCCA by settingW = I,

B = 0 (and disregarding dynamics).
6For more details on LDS, please see [17] and [3], Chapter 13.



are defined as

ε ∼ N
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u ∼ N
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, (3.11)

whereVz ∈ R
d×T andVzi ∈ R

di×T . The other matrices used above are defined
asXT = [XT

1 , . . . ,X
T
N ], W

T = [WT
1 , . . . ,W

T
N ], B as the block diagonal matrix of

[B1, . . . ,BN ] andA as the block diagonal matrix of[Az,Az1, . . . ,AzN ]. Similarly to
LDS, the joint log-likelihood function of DPCCA is defined as

lnP (X,Z|θ) =lnP (ẑ1|µ, V ) +
T∑

t=2

lnP (ẑt|ẑt−1,A,Vẑ)

+

T∑

t=1

lnP (xt|ẑt,W,B, Σ̂). (3.12)

In order estimate the latent spaces, we apply the Rauch-Tung-Striebel (RTS) smoother
on Ẑ (the algorithm can be found in [17], A.3). In this way, we obtain E[ẑt|XT ],
V [ẑt|XT ] andV [ẑtẑt−1|XT ]7.

3.2.2 Parameter Estimation

The parameter estimation of the M-step has to be derived specifically for this fac-
torised model. We consider the expectation of the joint model log-likelihood (Eq. 3.12)
wrt. posterior and obtain the partial derivatives of each parameter for finding the sta-

7We note that the complexity of RTS is cubic in the dimension ofthe state space. Thus, when estimat-
ing high dimensional latent spaces, computational or numerical issues may arise (due to the inversion of
large matrices). If any of the above is a concern, the complexity of RTS can be reduced to quadratic [21],
while inference can be performed more efficiently similarlyto [5].



tionary points. Note theW andB matrices appear in the likelihood as:

Eẑ[lnP (X, Ẑ)] =−
T

2
ln|Σ̂| − Eẑ

[
T∑

t=1

(xt − [W,B]ẑt)
T

Σ̂−1 (xt − [W,B]ẑt)

]

+ . . . . (3.13)

Since they are composed of individualWi andBi matrices (which are parameters for
each sequencei), we calculate the partial derivatives∂Wi and∂Bi in Eq. 3.13. Sub-
sequently, by setting to zero and re-arranging, we obtain the update equations for each
W∗

i andB∗
i :

W∗
i =

(
T∑

t=1

xi,tE[zi,t]−B∗
iE[zi,tz

T
t ]

)(
T∑

t=1

E[ztz
T
t ]

)−1

(3.14)

B∗
i =

(
T∑

t=1

xi,tE[z
T
t ]−W∗

iE[ztz
T
i,t]

)(
T∑

t=1

E[zi,tz
T
i,t]

)−1

(3.15)

Note that the weights arecoupled and thus the optimal solution should be found it-
eratively. As can be seen, in contrast to PCCA, in DPCCA the individual factors of
each sequence are explicitly estimated instead of being marginalised out. Similarly, the
transition weight updates for the individual factorsZi are as follows:

A∗
z,i =

(
T∑

t=2

E[zi,tz
T
i,t−1]

)(
T∑

t=2

E[zi,t−1z
T
i,t−1]

)−1

(3.16)

where by removing the subscripti we obtain the updates forAz, corresponding to the
shared latent spaceZ. Finally, the noise updatesVẐ andΣ̂ are estimated similarly to
LDS [17].

3.3 DPCCA with Time Warpings

Both PCCA and DPCCA exhibit several advantages in comparison to the classical
formulation of CCA. Mainly, as we have shown, (D)PCCA can inherently handle more
than two sequences, building upon the multiset nature of PCCA. This is in contrast to
the classical formulation of CCA, which due to the pairwise nature of the correlation
operator is limited to two sequences8. This is crucial for the problems at hand since
both methods yield an accurate estimation of the underlyingsignals ofall observation
sequences, free of individual factors and noise. However, both PCCA and DPCCA
carry the assumption that the temporal correspondences between samples of different

8The recently proposed multiset-CCA [8] can handle multiplesequences but requires maximising over
sums of pairwise operations.
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Figure 3.1: Valence annotations along with video stills.

sequences areknown, i.e. that the annotation of experti at timet directly corresponds
to the annotation of expertj at the same time. Nevertheless, this assumption is often
violated since different experts exhibit different time lags in annotating the same pro-
cess (e.g., Fig. 3.1, [12]). Motivated by the latter, we extend the DPCCA model to
account for thismisalignment of data samples by introducing a latent warping process
into DPCCA, in a manner similar to [25]. In what follows, we firstly describe some
basic background on time-warping and subsequently proceedto define our model.

3.3.1 Time Warping

Dynamic Time Warping (DTW) [15] is an algorithm for optimally aligning two se-
quences of possibly different lengths. Given sequencesX ∈ R

D×Tx andY ∈ R
D×Ty ,

DTW aligns the samples of each sequence by minimising the sum-of-squares cost, i.e.
||X∆x−Y∆y||2F , where∆x ∈ R

Tx×T∆ and∆y ∈ R
Ty×T∆ are binary selection matrices,

with T∆ the aligned, common length. In this way, the warping matrices∆ effectively
re-map the samples of each sequence. Although the number of possible alignments is
exponential inTxTy, employing dynamic programming can recover the optimal path in
O(TxTy). Furthermore, the solution must satisfy the boundary, continuity and mono-
tonicity constraints, effectively restricting the space of ∆x, ∆y [15].

An important limitation of DTW is the inability to align signals of different dimen-
sionality. Motivated by the former, CTW [25] combines CCA and DTW, thus alowing
the alignment of signals of different dimensionality by projecting into a common space
via CCA. The optimisation function now becomes||VT

xX∆x − VT
y Y∆y||2F , where

X ∈ R
Dx×Tx ,Y ∈ R

Dy×Tx, andVx,Vy are the projection operators (matrices).

3.3.2 DPCTW Model

We define DPCTW based on the graphical model presented in Fig.3.2. Given a set
D of N sequences of varying duration, with each sequenceXi = [xi,1, . . . ,xi,Ti

] ∈
R

Di×Ti, we postulate the latent common Markov processZ = {z1, . . . , zt}. Firstly,Z
is warped using the warping operator∆i, resulting in the warped latent sequenceζi.
Subsequently, eachζi generates each observation sequenceXi, also considering the



annotator/sequence biasZi and the observation noiseσ2
i . We note that we do not im-

pose parametric models for warping processes. Inference inthis general model can be
prohibitively expensive, in particular because of the needto handle the unknown align-
ments. We instead decided to handle the inference in two steps: (i) fix the alignments
∆i and find the latentZ andZi’s, and (ii) given the estimatedZ,Zi find the optimal
warpings∆i. For this, we decided to optimise the following objective function:

L(D)PCTW =
N∑

i

N∑

j,j 6=i

||E[Z|Xi]∆i − E[Z|Xj ]∆j ||2F
N(N − 1)

(3.17)

where when using PCCA,E[Z|Xi] = WT
i (WiW

T
i +Ψi)

−1Xi (Eq. 3.4). For DPCCA,
E[Z|Xi] is inferred via RTS smoothing (Sec. 3.2). A summary of the full algorithm is
presented in Algorithm 1.

At this point, it is important to clarify that our model is flexible enough to be straight-
forwardly used with varying warping techniques. For example, the Gauss-Newton warp-
ing proposed in [24] can be used as the underlying warping process for DPCCA, by
replacing the projected dataVT

i Xi with E[Z|Xi] in the optimisation function. Algo-
rithmically, this only changes the warping process (line 3,Algorithm 1). Finally, we
note that since our model iterates between estimating the latent spaces with (D)PCCA
and warping, the computational complexity of time warping is additive to the cost of
each iteration. In case of the DTW alignment for two sequences, this incurs an extra
cost ofO(TxTy). In case of more than two sequences, we utilise a DTW-based algo-
rithm, which is a variant of the so-called Guide Tree Progressive Alignment, since the
complexity of dynamic programming increases exponentially with the number of se-
quences. Similar algorithms are used in state-of-the-art sequence alignment software in
biology, e.g., Clustar [11]. The complexity of the employedalgorithm isO(N2T 2

max)
whereTmax is the maximum (aligned) sequence length andN the number of sequences.
More efficient implementations can also be used by employingvarious constraints [15].

3.4 Features for Annotator Fusion

In the previous sections, we considered the observed data toconsist only of the given
annotations,D = {X1, . . . ,XN}. Nevertheless, in many problems one can extract addi-
tional observed information, which we can consider as a formof complementary input
(e.g., visual or audio features). In fact, in problems whereannotations are subjective
and no objective ground truth is available for any portion ofthe data, such input can
be considered as the only objective reference to the annotation/sequence at hand. Thus,
incorporating it into the model can significantly aid the determination of the ground
truth.

Motivated by the latter argument, we used two models which augment DPCCA/
DPCTW with inputs. Since the family of component analysis techniques we study
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Figure 3.2: Graphical model of DPCTW. Shaded nodes represent the observations. By
ignoring the temporal dependencies, we obtain the PCTW model.

Algorithm 1: Dynamic Probabilistic CCA with Time Warpings (DPCTW)

Data: D = X1, . . . ,XN , X
T = [XT

1 , . . . ,X
T
N ]

Result: P (Z|X1, . . .XN), P (Z|Xi),∆i, σ
2
i , i = 1 : N

1 repeat
2 Obtain alignment matrices(∆1, . . . ,∆N) by optimising Eq. 3.17 on

E[Z|XT
1 ], . . . ,E[Z|X

T
N ]

∗

3 XT
∆ = [(X1∆1)

T , . . . , (XN∆N )
T ]

4 repeat
5 EstimateE[ẑt|XT

∆], V [ẑt|XT
∆] andV [ẑtẑt−1|XT

∆] via RTS
6 for i = 1, . . . , N do
7 repeat
8 UpdateW∗

i according to Eq. 3.14
9 UpdateB∗

i according to Eq. 3.15
10 until Wi, Bi converge
11 UpdateA∗

i according to Eq. 3.16

12 UpdateA∗,V∗

Ẑ
, Σ̂∗ according to Sec. 3.2.2

13 until DPCCA converges
14 for i = 1, . . . , N do

15 θi =

{[
Az 0
0 Ai

]

,Wi,Bi,

[
VZ 0
0 Vi

]

, σ2
i I

}

16 EstimateE[ẑt|XT
i ], V [ẑt|XT

i ] andV [ẑtẑt−1|XT
i ] via RTS onθi.

17 until LDPCTW converges
18 ∗ SinceE[ẑt|XT

i
] is unkown in the first iteration, useXi instead.



are typically unsupervised, incorporating inputs leads toa form of supervised learn-
ing. Such models can find a wide variety of applications sincethey are able to exploit
label information in addition to observations. A suitable example lies in dimensional
affect analysis, where it has been shown that specific emotion dimensions correlate bet-
ter with specific cues, (e.g., valence with facial features,arousal with audio features
[13, 7]). Thus, one can know a-priori which features to use for specific annotations.

Throughout this discussion, we assume that a set of complementary input or features
Y = {Y1, . . . ,Yν} is available, whereYj ∈ R

Dyj
×Tyj . While discussing extensions

of DPCCA, we assume that all sequences have equal length. When incorporating time
warping, sequences can have different lengths.

3.4.1 Supervised-Generative DPCCA (SG-DPCCA)

We firstly consider the model where we simply augment the observation model with a
set of featuresYj. In this case, the generative model for DPCCA (Eq. 3.9) is:

xi,t = Wi,tzt +Bizi,t + εi, (3.18)

yj,t = hj,s(zt|Wj,t) + hj,p(zj,t|Bj) + εj, (3.19)

wherei = {1, . . . , N} andj = {N + 1, . . . , N + ν + 1}. The arbitrary functionsh
map the shared space to the feature space in a generative manner, whileεj ∼ N (0, σ2

j I).
The latent priors are still defined as in Eq. 3.7,3.8. By assuming thath is linear, we
can group the parametersW = [W1, . . . ,WN , . . . ,WN+ν ], B as the block diagonal of
([B1, . . . ,BN , . . . ,BN+ν]) andΣ̂ as the block diagonal of([σ2I1, . . . , σ

2IN , . . . , σ
2IN+ν ]).

Inference is subsequently applied as described in Sec. 3.2.

This model, which we dub SG-DPCCA, in effect captures a common shared space
of both annotationsX and available featuresY for each sequence. In our generative
scenario, the shared space generates both features and annotations. By further setting
hj,p to zero, one can force the representation of the entire feature spaceYj onto the
shared space, thus imposing stronger constraints on the shared space given each anno-
tationZ|Xi. As we will show, this model can help identify unwanted annotations by
simply analysing the posteriors of the shared latent space.We note that the additional
form of supervision imposed by the input on the model is reminiscent of SPCA for PCA
[22]. The discriminative ability added by the inputs (or labels) also relates DPCCA to
LDA [2]. The graphical model of SG-DPCCA is illustrated in Fig. 3.3(b).

SG-DPCCA can be easily extended to handle time-warping as described in Sec. 3.3
for DPCCA (SG-DPCTW). The main difference is that now one would have to introduce
one more warping function for each set of features, resulting in a set ofN+ν functions.
Denoting the complete data/input set asDo = {X1, . . . ,XN ,Y1, . . . ,Yν}, the objective



function for obtaining the time warping functions∆i for SG-DPCTW can be defined as:

LSDPCTW o =
N+ν∑

i

N+ν∑

j,j 6=i

||E[Z|Do
i ]∆i − E[Z|Do

j ]∆j ||2F
(N + ν)(N + ν − 1)

. (3.20)

3.4.2 Supervised-Discrimative DPCCA (SD-DPCCA)

The second model augments the DPCCA model by regressing on the given features. In
this case, the posterior of the shared space (Eq. 3.7) is formulated as

p(zt|zt−1,Y1:ν,A,Vẑ) ∼

N (Azzt−1 +
ν∑

j=1

hj(Yj|Fj),Vz), (3.21)

where each functionhj performs regression on the featuresYj, whileFj ∈ R
d×Dyj are

the loadings for the features (where the latent dimensionality is d). This is similar to
how input is modelled in a standard LDS [6]. To find the parameters, we maximise the
complete-data likelihood (Eq. 3.12), where we replace the second term referring to the
latent probability with Eq. 3.21,

T∑

t=2

lnP (ẑt|ẑt−1,Y1:ν ,A,Vẑ). (3.22)

In this variation, the shared space at stept is generated from the previous latent state
zt−1 as well as the features at stept − 1,

∑ν

j=1 yj,t−1 (Fig. 3.3(c)). We dub this model
SD-DPCCA. Without loss of generality we assumeh is linear, i.e.hj,s = Wj,tzt, while
we model the feature signal only in the shared space, i.e.hj,p = 0. Finding the saddle
points of the derivatives with respect to the parameters yields the following updates for
the matricesAz andFj , ∀j = 1, . . . , ν:

A∗
z =

(
T∑

t=2

E[ztz
T
t−1]−

ν∑

j=1

F∗
jyj,t

)(
T∑

t=2

E[zt−1z
T
t−1]

)−1

, (3.23)

F∗
j =

(

E[zt]−A∗
zE[zt−1]−

ν∑

i=1,i 6=j

F∗
iYi

)

Y−1
j . (3.24)

Note that as with the loadings on the shared/individual spaces (W andB), the opti-
misation ofAz andFj matrices should again be determined recursively. Finally,the
estimation ofVZ also changes accordingly:

V∗
z
= 1

T−1

∑T

t=2(E[ztz
T
t ]− E[ztz

T
t−1]A

∗T
z

−A∗
zE[zt−1z

T
t ] +A∗

zE[zt−1z
T
t−1]A

∗T
z

+
∑ν

j=1(A
∗
zE[zt−1]Y

∗T
j F∗T

j + F∗
jYjE[z

T
t−1]A

∗T
z

+F∗
jYj

∑ν

i=1,i 6=j Y
T
i F

∗T
i − E[zt]Y

T
j F

∗T
j

−F∗
jYjE[z

T
t ])).

(3.25)
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Figure 3.3: Comparing the model structure of DPCCA (a) to SG-DPCCA (b) and SD-
DPCCA (c). Notice that the shared spacez generates both observations and features in
SG-DPCCA, while in SD-DPCCA, the shared space at timet is generated by regressing
from the featuresy and the previous shared space statezt−1.

SD-DPCCA can be straight-forwardly extended with time-warping as with DPCCA
in Sec. 3.3, resulting in SD-DPCTW. Another alignment step is required before per-
forming the recursive updates mentioned above in order to find the correct training/testing
pairs forzt andY. Assuming the warping matrices are∆z and∆y, then in Eq. 3.23z
is replaced with∆zz andy with ∆yy. The influence of featuresY on the shared latent
spaceZ in SD-DPCCA and SG-DPCCA is visualised in Fig. 3.3.

3.4.3 Varying Dimensionality

Typically, we would expect the dimensionality of a set of annotations to be the same.
Nevertheless in certain problems, especially when using input features as in SG-DPCCA
(Sec. 3.4.1), this is not the case. Therefore, in case the observations/input features are
of varying dimensionalities, one can scale the third term ofthe likelihood (Eq. 3.12) in
order to balance the influence of each sequence during learning regardless of its dimen-
sionality:

T∑

t=1

(
ν∑

j=1

1

Dyj

ln
(
P (yt,j|ẑt,Wj,Bj, σ

2
j )
)
+

N∑

j=1

1

Di

ln
(
P (xt,j|ẑt,Wj,Bj, σ

2
i )
)

)

. (3.26)

3.5 Ranking and filtering annotations

In this section, we will refer to the issue of ranking and filtering available annotations.
Since in general, we consider that there is no “ground truth”available, it is not an easy
task to infer which annotators should be discarded and whichkept. A straightforward
option would be to keep the set of annotators which exhibit a decent level of agreement



with each other. Nevertheless, this naive criterion will not suffice in case where e.g., all
the annotations exhibit moderate correlation, or where sets of annotations are clustered
in groups which are intra-correlated but not inter-correlated.

The question that naturally arises is how to rank and evaluate the annotators when
there is no ground truth available and their inter-correlation is not helpful. We remind
that DPCCA maximises the correlation of the annotations in the shared spaceZ, by re-
moving bias, temporal discrepancies and other nuisances from each annotation. It would
therefore be reasonable to expect the latentposteriors for each annotation (Z|Xi), to be
as close as possible. Furthermore, the closer the posteriorgiven each annotation (Z|Xi)
to the posterior given all sequences (Z|D), the higher the ranking of the annotator should
be, since the closer it is, the larger the portion of the shared information is contained in
the annotators signal.

The aforementioned procedure can detectspammers, i.e. annotators who do not even
pay attention at the sequence they are annotating andadversarial or malicious annota-
tors that provide erroneous annotations due to e.g., a conflict of interests and can rank
the confidence that should be assigned to the rest of the annotators. Nevertheless, it
does not account for the case where multiple clusters of annotators are intra-correlated
but not inter-correlated. In this case, it is most probable that the best-correlated group
will prevail in the ground truth determination. Yet, this does not mean that the best-
correlated group is the correct one. In this case, we use a setof inputs (e.g., tracking
facial points), which can essentially represent the “gold standard”. The assumption un-
derlying this proposal is that the correct sequence features should maximally correlate
with the correct annotations of the sequence. This can be straightforwardly performed
with SG-DPCCA, where we attainZ|Y (shared space given input) and compare toZ|Xi

(shared space given annotationi).

The comparison of latent posteriors is further motivated byR.J. Aumann’s agreement
theorem [1]: “If two people are Bayesian rationalists with common priors, and if they
have common knowledge of their individual posteriors, thentheir posteriors must be
equal”. Since our model maintains the notion of “common knowledge” in the estimation
of the shared space, it follows from Aumann’s theorem that the individual posteriors
Z|Xi of each annotationi should be as close as possible. This is a sensible assumption,
since one would expect that if all bias, temporal discrepancies and other nuisances are
removed from annotations, then there is no rationale for theposteriors of the shared
space to differ.

A simple algorithm for filtering/ranking annotations (utilising spectral clustering [18])
can be found in Algorithm 2. The goal of the algorithm is to findtwo clusters,Cx and
Co, containing (i) the set of annotations which are correlatedwith the ground truth,
and (ii) the set of “outlier” annotations, respectively. Firstly, DPCCA/DPCTW is ap-
plied. Subsequently, a similarity/distance matrix is constructed based on the posterior



distances of each annotationZ|Xi along with the featuresZ|Y. By performing spectral
clustering, one can keep the cluster to whichZ|Y belongs (Cx) and disregard the rest of
the annotations belonging inCo. The ranking of the annotators is computed implicitly
via the distance matrix, as it is the relative distance of eachZ|Xi toZ|Y. In other words,
the feature posterior is used here as the “ground truth”. Depending on the application
(or in case features are not available), one can use the posterior given all annotations,
Z|X1, . . . ,XN instead ofZ|Y. Examples of distances/metrics that can be used include
the alignment error (see Sec. 3.3) or the KL divergence between normal distributions
(which can be made symmetric by employing e.g., the Jensen-Shannon divergence, i.e.
DJS(P ||Q) = 1

2
DKL(P ||Q) + 1

2
DKL(Q||P )).

Algorithm 2: Ranking and filtering annotators
Data: X1, . . . ,XN ,Y

Result: Rank of eachXi, Cc

1 begin
2 Apply SG-DPCTW/SG-DPCCA(X1, . . . ,XN,Y)
3 ObtainP (Z|Y), P (Z|Xi), i = 1, . . . , N
4 Compute Distance MatrixS of [P (Z|X1), . . . , P (Z|XN), P (Z|Y)]

5 NormaliseS, L← I−D− 1

2SD− 1

2

6 {Cx, Co} ← Spectral Clustering(L)
7 KeepCx whereP (Z|Y) ∈ Cx

8 Rank eachXi ∈ Cx based on distance ofP (Z|Xi) to P (Z|Y)

9 In caseY is not available, replaceP (Z|Y) with P (Z|X1:N ).

We note that in case of irrelevant or malicious annotations,we assume that the cor-
responding signals will be moved to the private space and will not interfere with the
time warping. Nevertheless, in order to ensure this, one canimpose constraints on the
warping process. This is easily done by modifying the DTW by imposing e.g., slope
or global constraints such as the Itakura Parallelogram or the Sakoe-Chiba band, in or-
der to constraint the warping path while also decreasing thecomplexity (c.f., Chap. 5,
of [15]). Furthermore, other heuristics can be applied, e.g. firstly filter out the most
irrelevant annotations by applying SG-DPCCA without time warping, or threshold the
warping objective directly (Eq. 3.17).

3.6 Experiments

In order to evaluate our models, we present a set of experiments on both synthetic
(Sec. 3.6.1) and real (Sec. 3.6.2 & 3.6.3) data.



3.6.1 Synthetic Data

For synthetic experiments, we employ a setting similar to [25]. A set of 2D spirals
are generated asXi = UT

i Z̃M
T
i +N, whereZ̃ ∈ R

2×T is the true latent signal which
generates theXi, while theUi ∈ R

2×2 andMi ∈ R
Ti×m matrices impose random

spatial and temporal warping. The signal is furthermore perturbed by additive noise
via the matrixN ∈ R

2×T . EachN(i, j) = e × b, wheree ∼ N (0, 1) andb follows a
Bernoulli distribution withP (b = 1) = 1 for Gaussian andP (b = 1) = 0.4 for spike
noise. The length of the synthetic sequences varies, but is approximately 200.

This experiment can be interpreted as both of the problems weare examining. Viewed
as a sequence alignment problem the goal is to recover the alignment of each noisyXi,
where in this case the true alignment is known. Considering the problem of fusing mul-
tiple annotations, the latent signalZ̃ represents the true annotation while the individual
Xi form the set of noisy annotations containing annotation-specific characteristics. The
goal is to recover the true latent signal (in DPCCA terms,E[Z|X1, . . . ,XN ]).

The error metric we used computes the distance from the ground truth alignment (̃∆)
to the alignment recovered by each algorithm (∆) [24], and is defined as:

error=
dist(Π, Π̃) + dist(Π̃,Π)

T∆ + T̃∆

,

dist(Π1,Π2) =

T 1

∆∑

i=1

min({||π(i)
1 − π

(j)
2 ||})

T 2

∆

j=1), (3.27)

whereΠi ∈ R
T i
∆
×N contains the indices corresponding to the binary selectionmatrices

∆i, as defined in Sec. 3.3.1 (and [24]), whileπ(j) refers to thej-th row of Π. For
qualitative evaluation, in Fig. 3.4, we present an example of applying (D)PCTW on 5
sequences. As can be seen, DPCTW is able to recover the true, de-noised, latent sig-
nal which generated the noisy observations (Fig. 3.4(e)), while also aligning the noisy
sequences (Fig. 3.4(c)). Due to the temporal modelling of DPCTW, the recovered la-
tent space is almost identical to the true signalZ̃ (Fig. 3.4(b)). PCTW on the other
hand is unable to entirely remove the noise (Fig. 3.4(d)). Fig. 3.5 shows further results
comparing related methods. CTW and GTW perform comparably for two sequences,
both outperforming DTW. In general, PCTW seems to perform better than CTW, while
DPCTW provides better alignment than other methods compared.

3.6.2 Real Data I: Fusing Multiple Annotations

In order to evaluate (D)PCTW in case of real data, we employ the SEMAINE database
[12]. The database contains a set of audio-visual recordings of subjects interacting with
operators. Each operator assumes a certain personality - happy, gloomy, angry and prag-
matic - with a goal of inducing spontaneous emotions by the subject during a naturalistic
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conversation. We use a portion of the database containing recordings of 6 different sub-
jects, from over 40 different recording sessions, with a maximum length of 6000 frames
per segment. As the database was annotated in terms of emotion dimensions by a set of
experts (varying from 2 to 8), no single ground truth is provided along with the record-
ings. Thus, by consideringX to be the set of annotations and applying (D)PCTW, we
obtainE[Z|D] ∈ R

1×T (given all warped annotations)9, which represents the shared
latent space with annotator-specific factors and noise removed. We assume thatE[Z|D]
represents the ground truth. An example of this procedure for (D)PCTW can be found
in Fig. 3.6. As can be seen, DPCTW provides a smooth, aligned estimate, eliminating
temporal discrepancies, spike-noise and annotator bias. In this experiment, we evalu-
ate our models on four emotion dimensions: valence, arousal, power, and anticipation
(expectation).

To obtain features for evaluating the ground truth, we trackthe facial expressions of
each subject via a particle filtering tracking scheme [14]. The tracked points include the
corners of the eyebrows (4 points), the eyes (8 points), the nose (3 points), the mouth (4
points) and the chin (1 point), resulting in 20 2D points for each frame.

For evaluation, we consider a training sequenceX, for which the set of annotations
Ax = {a1, . . . , aR} is known. From this set (Ax), we derive the ground truthGT X - for
(D)PCTW,GT X = E[Z|Ax]. Using the tracked pointsPX for the sequence, we train a
regressor to learn the functionfx : PX → GT X. In (D)PCTW,Px is firstly aligned with
GT x as they are not necessarily of equal length. Subsequently given a testing sequence
Y with tracked pointsPy, usingfx we predict each emotion dimension (fx(Py)). The

9We note that latent (D)PCTW posteriors used, e.g.Z|Xi are obtained on time-warped observations,
e.g.Z|Xi∆i (See Alg. 1)



procedure for deriving the ground truth is then applied on the annotations of sequence
Y, and the resultingGT y is evaluated againstfx(Py). The correlation coefficient of
theGT y andfx(Py) (after the two signals are temporally aligned) is then used as the
evaluation metric forall compared methods.

The reasoning behind this experiment is that the “best” estimation of the ground truth
(i.e. the gold standard) should maximally correlate with the corresponding input features
- thus enabling any regressor to learn the mapping function more accurately.

We also perform experiments with the supervised variants ofDPCTW, i.e. SG-
DPCTW and SD-DPCTW. In this case, a set of featuresY is used for inferring the
ground truth,Z|D. Since we already used the facial trackings for evaluation,in order
to avoid biasing our results10, we use features from the audio domain. In particular,
we extract a set of audio features consisting of 6 mel-frequency Cepstrum Coefficients
(MFCC), 6 MFCC-Delta coefficients along with prosody features (signal energy, root
mean squared energy and pitch), resulting in a 15 dimensional feature vector. The audio
features are used to derive the ground truth with our supervised models, exactly acting
an objective reference to our sequence. In this way, we impose a further constraint on
the latent space: it should also explain the audio cues and not only the annotations,
given that the two sets are correlated. Subsequently, the procedure described above for
unsupervised evaluation with facial trackings is employed.

For regression, we employ RVM [19] with a Gaussian kernel. Weperform both
session-dependent experiments, where the validation was performed on each session
separately, and session-independent experiments where different sessions were used for
training/testing. In this way, we validate the derived ground truth generalisation ability
(i) when the set of annotators is the same and (ii) when the setof annotators may differ.

Session-dependent and session-independent results are presented in Tables 3.1 and
3.2. We firstly discuss the unsupervised methods. As can be seen, taking a simple anno-
tator average (A-AVG) gives the worse results (as expected), with a very high standard
deviation and weak correlation. The model of Raykar et al. [16] provides better results,
which can be justified by the variance estimation for each annotator. Modelling annota-
tor bias and noise with (D)PCCA further improves the results. It is important to note that
incorporating alignment is significant for deriving the ground truth; this is reasonable
since when the annotations are misaligned, shared information may be modelled as in-
dividual factors or vice-versa. Thus, PCTW improves the results further while DPCTW
provides the best results, confirming our assumption that combining dynamics, tempo-
ral alignment, modelling noise and individual-annotator bias leads to a more objective
ground truth. Finally, regarding supervised models SG-DPCTW and SD-DPCTW, we
can observe that the inclusion of audio features in the ground truth generation improves
the results, with SG-DPCTW providing better correlated results than SD-DPCTW. This

10Since we use the facial points forevaluating the derived ground truth, if we had also used them for
deriving the ground truth we would bias the evaluation procedure.



is reasonable since in SG-DPCTW the featuresY are explicitly generated from the
shared space, thus imposing a form of strict supervision, incomparison to SD-DPCTW
where the inputs essentially elicit the shared space.

Table 3.1: Comparison of ground truth evaluation based on the correlation coefficient
(COR), on session dependent experiments. The standard deviation over all results is
denoted byσ.

SD-DPCTW SG-DPCTW DPCTW PCTW
COR σ COR σ COR σ COR σ

Valence 0.78 0.18 0.78 0.17 0.77 0.18 0.70 0.18
Arousal 0.75 0.18 0.77 0.19 0.75 0.22 0.64 0.22

Power 0.78 0.13 0.85 0.10 0.77 0.16 0.76 0.10
Expectation 0.82 0.09 0.83 0.10 0.78 0.11 0.75 0.16

DPCCA PCCA RAYKAR [16] A-AVG
COR σ COR σ COR σ COR σ

Valence 0.64 0.21 0.63 0.20 0.61 0.20 0.54 0.36
Arousal 0.63 0.23 0.63 0.26 0.60 0.25 0.42 0.41

Power 0.68 0.16 0.67 0.18 0.62 0.22 0.42 0.36
Expectation 0.68 0.16 0.74 0.17 0.62 0.20 0.48 0.40

Table 3.2: Comparison of ground truth evaluation based on the correlation coefficient
(COR), on session independent experiments. The standard deviation over all results is
denoted byσ.

SD-DPCTW SG-DPCTW DPCTW PCTW
COR σ COR σ COR σ COR σ

Valence 0.73 0.19 0.73 0.19 0.72 0.22 0.66 0.24
Arousal 0.74 0.15 0.74 0.17 0.71 0.20 0.61 0.23

Power 0.72 0.28 0.75 0.24 0.72 0.34 0.70 0.19
Expectation 0.76 0.21 0.76 0.15 0.73 0.20 0.70 0.18

DPCCA PCCA RAYKAR [16] A-AVG
COR σ COR σ COR σ COR σ

Valence 0.62 0.28 0.58 0.23 0.57 0.27 0.53 0.33
Arousal 0.59 0.23 0.52 0.28 0.50 0.29 0.33 0.40

Power 0.60 0.26 0.58 0.27 0.57 0.27 0.39 0.31
Expectation 0.63 0.20 0.64 0.25 0.63 0.22 0.44 0.39

Ranking Annotations

We perform the ranking of annotations as proposed in Algorithm 2 to a set of emotion
dimension annotations from the SEMAINE database.

In Fig. 3.7(a), we illustrate an example where an irrelevantstructured annotation
(sinusoid), has been added to a set of five true annotations. Obviously the sinusoid can
be considered a spammer annotation since essentially, it isindependent of the actual
sequence at hand. In the figure we can see that (i) the derived ground truth is not affected
by the spammer annotation, (ii) the spammer annotation is completely captured in the
private space, and (iii) that the spammer annotation is detected in the distance matrix of
E[Z|Xi] andE[Z|X].



In Fig. 3.7(b), we present an example where a set of 5 annotations has been used
along with 8 spammers. The spammers consist of random Gaussian distributions along
with structured periodical signals (i.e. sinusoids). We can see that it is difficult to dis-
criminate the spammers by analysing the distance matrix ofX since they do maintain
some correlation with the true annotations. By applying Algorithm 2, we obtain the dis-
tance matrix of the latent posteriorsZ|Xi andZ|D. In this case, we can clearly detect
the cluster of annotators which we should keep. By applying spectral clustering, the
spammer annotations are isolated in a single cluster, whilethe shared space along with
the true annotations fall into the other cluster. This is also obvious by observing the
inferred weight vector (W), which is near-zero for sequences 6-14, implying that the
shared signal is ignored when reconstructing the specific annotation (i.e. the reconstruc-
tion is entirely from the private space ). Finally, this is also obvious by calculating the
KL divergence comparing each individual posteriorZ|Xi to the shared space posterior
given all annotationsZ|D, where sequences 6-14 have a high distance while 1-5 have a
distance which is very close to zero.

In Fig. 3.7(c), we present another example where in this case, we joined two sets
of annotations which were recorded for two distinct sequences (annotators 1-6 for se-
quence A and annotators 7-12 for sequence B). In the distancematrix taken on the ob-
servationsX, we can see how the two clusters of annotators are already discriminable,
with the second cluster, consisting of annotations for sequence B, appearing more cor-
related. We use the facial trackings for sequence A (trackedas described in this section)
as the featuresY, and then apply Algorithm 2. As can be seen in the distance matrix of
[Z|Xi,Z|Y], (i) the two clusters of annotators have been clearly separated, and (ii) the
posterior of featuresZ|Y clearly is much closer to annotations 1-6, which are the true
annotations of sequence A.

3.6.3 Real Data II: Action Unit Alignment

In this experiment we aim to evaluate the performance of (D)PCTW for the temporal
alignment of facial expressions. Such applications can be useful for methods which
require pre-aligned data, e.g. AAM (Active Appearance Models). For this experiment,
we use a portion of the MMI database which contains more than 300 videos, ranging
from 100 to 200 frames. Each video is annotated (per frame) interms of the temporal
phases of each Action Unit (AU) manifested by the subject being recorded, namely
neutral, onset, apex and offset. For this experiment, we track the facial expressions of
each subject capturing 20 2D points, as in Sec. 3.6.2.

Given a set of videos where the same AU is activated by the subjects, the goal is to
temporally align the phases of each AU activation acrossall videos containing that AU,
where the facial points are used as features. In the context of DPCTW, eachXi is the
facial points of videoi containing the same AU, whileZ|Xi is now the common latent
space given videoi, the size of which is determined by cross-validation, and isconstant
over all experiments for a specific noise level.
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Figure 3.7: Annotation filtering and ranking (black - low, white - high). (a) Experiment
with a structured false annotation (sinusoid). The shared space is not affected by the
false annotation, which is isolated in the individual space. (b) Experiment with 5 true
and 9 spammer (random) annotations. (c) Experiment with 6 true annotations, 7 irrele-
vant but correlated annotations (belonging to a different sequence). The facial pointsY,
corresponding to the 6 true annotations, were used for supervision (with SG-DPCCA).



In Fig. 3.8 we present results based on the number of misaligned frames for AU
alignment, on all action unit temporal phases (neutral, onset, apex, offset) for AU 12
(smile), on a set of 50 pairs of videos from MMI. For this experiment, we used the
facial features relating to the lower face, which consist of11 2D points. The features
were perturbed with sparse spike noise in order to simulate the mis-detection of points
with detection-based trackers, in order to evaluate the robustness of our techniques.
Values were drawn from the normal distributionN (0, 1) and added (uniformly) to 5%
of the length of each video. We gradually increased the number of features perturbed
by noise from 0 to 4. To evaluate the accuracy of each algorithm, we use a robust,
normalised metric. In more detail, let us say that we have twovideos, with featuresX1

andX2, and AU annotationsA1 andA2. Based on the features, the algorithm at hand
recovers the alignment matrices∆1 and∆2. By applying the alignment matrices on
the AU annotations (A1∆1 andA2∆2), we know to which temporal phase of the AU
each aligned frame of each video corresponds to. Therefore,for a given temporal phase
(e.g., neutral), we have a set of frame indices which are assigned to the specific temporal
phase in video 1,Ph1 and video 2,Ph2. The accuracy is then estimated asPh1∩Ph2

Ph1∪Ph2
.

This essentially corresponds to the ratio of correctly aligned frames to the total duration
of the temporal phase accross the aligned videos.

As can be seen in the average results in Fig. 3.8, the best performance is clearly
obtained by DPCTW. It is also interesting to highlight the accuracy of DPCTW on
detecting the apex, which essentially is the peak of the expression. This can be attributed
to the modelling of dynamics, not only in the shared latent space of all facial point
sequences but also in the domain of the individual characteristics of each sequence (in
this case identifying and removing the added temporal spiked noise). PCTW peforms
better on average compared than CTW and GTW, while the lattertwo methods perform
similarly. It is interesting to note that GTW seems to overpeform CTW and PCTW
for aligning the apex of the expression for higher noise levels. Furthermore, we point-
out that the Gauss-Newton warping used in GTW is likely to perform better for longer
sequences. Example frames from videos showing the unaligned and DPCTW-aligned
videos are shown in Fig. 3.9 .
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Figure 3.8: Accuracy of DTW, CTW, GTW, PCTW and DPCTW on the problem of
action unit alignment under spiked noise added to an increasing number of features for
AU = 12 (smile).
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Figure 3.9: Example stills from a set of videos from the MMI database, comparing the
original videos to the aligned videos obtained via DPCTW under spiked noise on 4 2D
points. (a) Blinking, AUs 4 and 46. (b) Mouth open, AUs 25 and 27.



Chapter 4

FROG Interest Model

In order to deal with the problem of interest prediction under realistic and uncon-
trolled scenarios such as in FROG, we firstly discretize the continuous annotations to
cover three classes, which are of main interest. In more detail, we solve a series of
binary classification problems, as seen in Fig. 4.1. As features, we utilise the pose and
3D points, as generated by the FROG tracker. The first step involves deciding whether
the input points form a valid facial structure, a facial shape in other words. Secondly,
given that we have a shape structure, we infer whether the tracked person is interested
or not. Finally, given that the person is interested, we derive the level of interest, be it
low or high.

Regarding the data used for training the models, we have a total of approximately
65000 frames at 64 FPS, where approximately 30000 frames areassigned to low inter-
est and 30000 frames to high interest, while the rest are assigned to no interest (3000
frames) and the class where no face is recognised (tracker error, 2000 frames). The
imbalanced nature of some classes is naturalistic to the data at hand, and has been
dealt with by selecting the proper misclassification penalty within SVM. During cross-
validation, the accuracy of level 0 (Face Verification) was 99.9%, of Level 1 (Inter-
est vs. No-Interest) 99.8% and finally, Level 2 (Low vs. High Interest) 97.5%. The
confusion matrices when training on the entire set utilising the parameters inferred by
cross-validation, are shown in Table 4.1.

LEVEL 0 LEVEL 1 LEVEL 2

0.999 0.001 0.992 0.008 0.993 0.007
0.000 1.000 0.000 1.000 0.018 0.982

Table 4.1: Confusion matrices for Level 0 (Face Verification), Level 1 (No Interest vs.
Interest) and level 2 (Low vs. High Interest).

We note that for each step, binary Support Vector Machine (SVM) classifiers were
employed. As aforementioned, we utilised the pose and the 3Dlandmarks, resulting in
201 feature vector dimensionality. For SVM, we used a RadialBasis Function (RBF)

kernel, i.e. for inputxi, K(x,xi) = exp
{

−(x−xi)2

r2

}

, with r2 being the length scale. As
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RETURN -1

RETURN 0

RETURN 1 RETURN 2

Figure 4.1: Interest prediction model for FROG.

it is well known, SVM’s, for a given class labelyi, solve the following problem:

min
1

2
||w||2s.t.yi(xiw + b)− 1 ≥ 0∀i (4.1)

wherew is the inferred set of weights, andyi the class labels, whereyi= +1 or−1, and
b simply represents a constant bias. Examples of using the interest prediction model on
FROG data are depicted in Figure 4.2.



INTEREST: 1 HIGH INTEREST: -1 INTEREST: 1 HIGH INTEREST: 1

INTEREST: -1 HIGH INTEREST: -1 INTEREST: 1 HIGH INTEREST: 1

INTEREST: -1 HIGH INTEREST: -1 INTEREST: 1 HIGH INTEREST: 1

INTEREST: 1 HIGH INTEREST: 1 INTEREST: 1 HIGH INTEREST: -1

Figure 4.2: Sample output by utilising the Interest Prediction model for FROG.



Chapter 5

Conclusion

A method for prediction of the visitors’ implicit affectivefeedback (e.g. attention
and interest) was developed for FROG project. The main goal was to develop a set
of visual methods for detecting human affective states including users’ positive and
negative reactions to FROG robot and their overall level of interest and engagement in
the current interaction with FROG. Facial landmarks as wellas face pose were used for
building our models. Based on our experiments in both synthetic and real FROG data,
this method meets all the requirements of the FROG project regarding the prediction of
the visitors’ implicit affective feedback.
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