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Chapter 1

Introduction

The main concept of FROG is to deliver a robust autonomousienotibot that uses
innovative design and behavior to engage visitors in théoeapon of outdoor sites.
The robot’'s human-aware behaviors and interaction will ®etbped with the specific
measurable goals to enable user engagement and interlestresburces the site has to
offer, knowledge transfer, ease of use and enjoyability.

FROG uses tour guide strategies derived from contextuargason studies in or-
der to engage the visitor in learning more about the poiniatefests they encounter.
FROG will adapt its tour guide strategy behaviors based ervisitors’ implicit affec-
tive feedback (e.g. attention and interest). Also, FROGlasmed to know whether
visitors are still moving, following or have stopped and wie they are interested and
are paying attention. By detecting head pose and viewiregtion FROG also knows
what point of interest visitors are focused on.

The task in this work package aims further to develop a seisol methods for de-
tecting human affective states including users’ positiveé megative reactions to FROG
robot and their overall level of interest and engagementiéncurrent interaction with
FROG. Detection is based on the state of the art in cognitienses and based on
morphological and temporal correlations. For this purpésgal landmarks as well as
face pose were used. The method for facial landmark deteatiavell as for face pose
estimation was developed for FROG and it was presented ik package 3.1 (FROG
tracker). Firstly, interest annotations were obtained fayoéated thousands of images
based on FROG data. Secondly, temporal alignment and fudionultiple annota-
tions in time was performed. Finally, the annotations wesedufor training models for
interest prediction. These tree main steps are presentkstail in the next chapters.



Chapter 2

Obtaining Interest Annotations

The interest annotations obtained in a continuous scaleendt#ained by providing
the annotators with the following instructions:

e Interest Rating in [—1, —0.5): the subject iglisinterested in the interaction, can
be mostly passive or appear bored, does not follow the rammbipassibly wants
to stop the session.

e Interest Rating in [—-0.5,0): the subject appears passive, possibly hesitating to
respond. The subject appeandifferent andunmotivated.

e Interest Rating approx. 0: the subject seems to follow the interaction with the
interaction partner, but it can not be recognized if he/sheterested. The subject
is neutral.

e Interest Rating in (0, 0.5]: The subject seems eager follow the interaction. The
subject isnterested.

e Interest Rating in (0.5, 1]: The subject seems pleased to participate in the inter-
action, can show some signs @fthusiasm, is expressive in terms of (positive)
emotions (e.g., laughing,).

The interest annotations where quantised as follows:

e No Interest (Class Ohnterest Rating in [—1,0): Disinterest or indifference, the
subject is not interested in the interaction and is unmtetvéo participate, pos-
sibly wants to terminate the interaction or is neutral.

e Interested (Class Ijterest Ratingin [0, 0.5): The subject seems interested in the
interaction and appears eager to follow.

e Highly Interested (Class 2terest Ratingin [0.5, 1]: The subject appears pleased
to participate in the interaction, can show signs of entmmiand is expressive in
terms of positive emotions (e.g., laughing).



Chapter 3

Analysis and Fusion of Continuous
Sets of Annotations

Fusing multiple continuous expert annotations is a crymiablem in machine learn-
ing and computer vision, particularly when dealing with ertain and subjective tasks
related to affective behaviour. Inspired by the concephdrring shared and individ-
ual latent spaces in Probabilistic Canonical Correlatioralsis (PCCA), we used a
novel, generative model that discovers temporal depemeiena the shared/individual
spaces (Dynamic Probabilistic CCA, DPCCA). In order to acswdate for temporal
lags, which are prominent amongst continuous annotatiwedurther introduce a la-
tent warping process, leading to the DPCCA with Time Warpi(@PCTW) model.
Finally, we used two supervised variants of DPCCA/DPCTWakhncorporate inputs
(i.e. visual or audio features), both in a generative (SGEDR) and discriminative
manner (SD-DPCCA). We show that the resulting family of medg can be used as
a unifying framework for solving the problems of temporagament and fusion of
multiple annotations in time, (i) can automatically rankdafilter annotations based
on latent posteriors or other model statistics, and (i@t thy incorporating dynamics,
modelling annotation-specific biases, noise estimatiomg warping and supervision,
DPCTW outperforms state-of-the-art methods for both thgregation of multiple, yet
imperfect expert annotations as well as the alignment et#ffe behaviour.

We initially present the first generalisation of PCCA to leag temporal dependen-
cies in the shared/individual spaces (Dynamic PCCA, DPCB)Yurther augmenting
DPCCA with time warping, the resulting model (Dynamic PCCahaMime Warpings,
DPCTW) can be seen as a unifying framework, concisely agpdidoth problems. The
individual contributions of this work can be summarisedakws:

e In comparison to state-of-the-art approaches in both fusfomultiple annota-
tions and sequence alignment, our model bears several tagesn We assume
that the “true” annotation/sequence lies in a shared |sjgate. E.g., in the prob-
lem of fusing multiple emotion annotations, we know thateRkperts have a com-
mon training in annotation. Nevertheless, each carries afsedividual factors



which can be assumed to be uninteresting (e.g., annotgoiéace specific bias).
In our model, individual factors are accounted for withinammotator-specific
latent space, thus effectively preventing the contammeadif the shared space by
individual factors. Most importantly, we introduce latesgace dynamics which
model temporal dependencies in both common and individgabts. Further-
more, due to the probabilistic and dynamic nature of the maebech annota-
tor/sequence’s uncertainty can be estimated for eacple, rather than for each
sequence.

¢ In contrast to current work on fusing multiple annotations,use a novel frame-
work able to handle temporal tasks. In addition to introdgaynamics, we also
employ temporal alignment in order to eliminate temporat@pancies amongst
the annotations.

e We present an elegant extension of DTW-based sequencema@igriechniques
(e.g., Canonical Time Warping, CTW) to a probabilistic npi#-sequence set-
ting. We accomplish this by treating the problem in a gemezgtrobabilistic
setting, both in the static (multiset PCCA) and dynamic ¢@saamic PCCA).

3.1 Multiset Probabilistic CCA

We consider the probabilistic interpretation of CCA, imlneed by Bach & Jordan
[2] and generalised by Klami & Kaski [18] In this section, we present an extended
version of PCCA [10] (multiset PCCA which is able to handle any arbitrary number
of sets. We consider a collection of datasBts= {X;, X, ..., Xy}, with eachX; €
RP>T whereD,; is the dimensionality and the number of instances. By adopting the
generative model for PCCA, the observation samptd setX,; € D is assumed to be
generated as

Xin = f(2n|Wi) + 9(2inBi) + €, (3.1)

whereZ; = [z;1,...,z;7] € R%"*T andZ = [z, ...,zr] € R™>T are theindependent
latent variables that capture the set-specific individbaracteristics and the shared sig-
nal amongst all observation sets, respectivély) andg(.) are functions that transform
each of the latent signalkandZ; into the observation space. They are parametrised by
W, andB,, while the noise for each set is representedbyvith ¢; Le;, i # j. Simi-
larly to [10], z,,, z; , ande; are considered to be independent (both over the set and the
sequence) and normally distributed:

Zn, Zin ~ N(0,1), &, ~ N(0,020). (3.2)

By consideringf andg to be linear functions we haviz,|W,) = W,z,, andg(z, ,|B;) =
B,z ,,, transforming the model presented in Eq. 3.1, to

Xin = W,z, +B;z; , + €. (3.3)

1[10] is also related to Tucker's inter-battery factor asiyf20, 4]
2In what follows we refer to multiset PCCA as PCCA.



Learning the multiset PCCA can be accomplished by generglithe EM algo-
rithm presented in [10], applied to two or more sets. FiyfstyD|Z.Z,,...,Zy) is
marginalised over set-specific factdfs, ..., Zy and optimised on eacNV,;. This
leads to the generative mode(x; ,|z,) ~ N (W,z,, ¥,), where®¥, = B,B! + 2L
SubsequentlyP(D|Z,Z, . .., Zy) is marginalised over the common fac@i&and then
optimised on eaclB; andos;. When generalising the algorithm for more than two sets,
we also have to consider how to (i) obtain the expectatiomeflatent space and (ii)
provide stable variance updates for all sets.

Two quantities are of interest regarding the latent spatmason. The first is the
common latent space given one sBtX;. In the classical CCA this is analogous to
finding the canonical variables [10]. We estimate the pastaf the shared latent
variableZ as follows:

P(Zn‘xz‘,n) ~ N(FYiXi,na I—W,),
v =W (WW/! + %), (3.4)

The latent space given theth sample fromall sets inD, which provides a better
estimate of the shared signal manifested in all observattsis estimated as

P(Zn‘XI:N,n> ~ N(7X1:N,n7 I- ’YW),
v =W (WWT + o)1 (3.5)

while the matricesW, ¥ andX,, are defined aWW? = [WI' W1 ... W] ¥ as
the block diagonal matrix o¥;_;.y ® andx{y , = [x{,, X3, ..., X].y ] Finally, the
variance is recovered on the full mode),, ~ N (W,z,, + B;z; ,,,071), as

ol =tr(S — XE[Z" |X]C”
T

—CE[Z|X]XT — CE[ZZT|X]CT)Z-H, (3.6)
whereS is the sample covariance matri3,is the block diagonal matrix dB,—.n, C =
(W, B], while the subscript in Eq. 3.6 refers to the i-th block of the full covariance
matrix. Finally, we note that the computational complexityPCCA for each iteration
is similar to deterministic CCA (cubic in the dimensioniai# of the datasets and linear
in the number of samples). PCCA though also recovers thaterapace.

3.2 Dynamic PCCA (DPCCA)

The PCCA model described in Sec. 3.1 exhibits several adgastwhen compared
to the classical formulation of CCA, mainly by providing apabilistic estimation of
a latent space shared by an arbitrary collection of datadetsy with explicit noise

SFor brevity of notation, we usd : N to indicate elementgl,...,N], e.g., X;.x =
[X17X27"'7XN]



and private space estimation. Nevertheless, static madelanable to learn temporal
dependencies which are very likely to exist when dealindp watal-life problems. In
fact, dynamics are deemed essential for successfully qpeirig tasks such as emotion
recognition, AU detection etc. [23].

Motivated by the former observation, we use a dynamic gdisaten of the static
PCCA model introduced in the previous section, where we meat eachX; as a tem-
poral sequence. For simplicity of presentation, we intoeda linear modélwhere
Markovian dependencies are learnt in the latent spZcasdZ;. In other words, the
variableZ models the temporal, shared signal amongst all observsg¢igunences, while
Z; captures the temporal, individual characteristics of essfuence. It is easy to ob-
serve that such a model fits perfectly with the problem ofrfigsnultiple annotations,
as it does not only capture the temporal shared signal ohabtions, but also mod-
els the unwanted, annotator-specific factors over timeerdgdly, instead of directly
applying the doubly independent priorsZas in Eq. 3.2, we now use the following:

p(2e|ze1) ~ N(A.zi-1, Vyz), (3.7)

p(zi,t|zi,t71) ~ N(Azizi,tfb VZ¢)7 n = 17 ey N7 (38)

where the transition matrices, andA ., model the latent space dynamics for the shared
and sequence-specific space respectively. Thus, idicstynicharacteristics of dynamic
nature appearing in a single sequence can be accuratatyatsti and prevented from
contaminating the estimation of the shared signal.

The resulting model bears similarities with traditionah&ar Dynamic System (LDS)
models (e.g. [17]) and the so-called Factorial Dynamic Medef. [5]. Along with
Eq. 3.7,3.8 and noting Eq. 3.3, the dynamic, generative hfoddDPCCA® can be
described as

Xit = Wi,tzt + Bizi,t + €, € ~ N(O, 0'2-2]:), (39)

where the subscripisandt refer to the-th observation sequence timestepspectively.

3.2.1 Inference

To perform inference, we reduce the DPCCA model to a £.D®his can be ac-
complished by defining a joint spad® = [Z7,Z7,...,Z%], Z € R¥*T whered =
d+ Zf.v d; with parameter® = {A, W ,B, V;, ﬁ)}. Dynamics in this joint space are
described aX, = [W,B]Z, + €, Z, = AZ,_, + u, where the noise processeandu

4A non-linear DPCCA model can be derived similarly to [9, 6].

5The model of Raykar et al. [16] can be considered as a spexsalaf (D)PCCA by settin§V = I,
B = 0 (and disregarding dynamics).

SFor more details on LDS, please see [17] and [3], Chapter 13.



are defined as

0?1

e~N |0, , (3.10)

u~AN|o, _ : (3.11)
V.,

V.
whereV, € R™*T andV,, € R%*T, The other matrices used above are defined
asX?” = [XT, ... XT], WI' = [WT ... 'WI], B as the block diagonal matrix of

[By,...,By] and A as the block diagonal matrix §A ., A.,,..., A.,]. Similarly to
LDS, the joint log-likelihood function of DPCCA is defined as

T
InP(X,Z|0) =InP (2|, V) + Y InP (2|21, A, V)
t=2

T
+3 " InP(x|2, W, B, 5). (3.12)

t=1

In order estimate the latent spaces, we apply the Rauch-Stmepel (RTS) smoother
on Z (the algorithm can be found in [17], A.3). In this way, we dbt&|z;|X7],
V(2| XT] andV |22, 1| X"]".

3.2.2 Parameter Estimation

The parameter estimation of the M-step has to be derivedfagdly for this fac-
torised model. We consider the expectation of the joint mindglikelihood (Eq. 3.12)
wrt. posterior and obtain the partial derivatives of eactapeeter for finding the sta-

"We note that the complexity of RTS is cubic in the dimensiothefstate space. Thus, when estimat-
ing high dimensional latent spaces, computational or nigakkissues may arise (due to the inversion of
large matrices). If any of the above is a concern, the conitglekRTS can be reduced to quadratic [21],
while inference can be performed more efficiently simildady5].



tionary points. Note th&V andB matrices appear in the likelihood as:

E:| ) (x — [W,Blz)"

t=1

o T ~
E:(InP(X,2)] = — 5In|S| -

3 (x, — [W,BJz) (3.13)

Since they are composed of individl; andB; matrices (which are parameters for
each sequencd, we calculate the partial derivativédV,; anddB; in Eq. 3.13. Sub-
sequently, by setting to zero and re-arranging, we obtamnfdate equations for each
W: andB;:

T —1
- <Z x;E[z;,] — BE[z; 2] ) <ZEztzt ) (3.14)
t=1
—1

T
= x;Elz]] — WE] ztz E(z; 2., p (3.15)
P 1) (mets)

Note that the weights areoupled and thus the optimal solution should be found it-
eratively. As can be seen, in contrast to PCCA, in DPCCA thkvidual factors of
each sequence are explicitly estimated instead of beinginadised out. Similarly, the
transition weight updates for the individual fact@sare as follows:

T T -1
Az,i = (Z E[Zi,tzg:t_l]> (Z E[zi,tlzzt_1]> (316)
t=2 t=2

where by removing the subscriptve obtain the updates fak., corresponding to the
shared latent spacé. Finally, the noise updateg , andX are estimated similarly to
LDS [17].

3.3 DPCCA with Time Warpings

Both PCCA and DPCCA exhibit several advantages in compatisdhe classical
formulation of CCA. Mainly, as we have shown, (D)PCCA candréntly handle more
than two sequences, building upon the multiset nature of Rddis is in contrast to
the classical formulation of CCA, which due to the pairwisdune of the correlation
operator is limited to two sequenéesThis is crucial for the problems at hand since
both methods yield an accurate estimation of the underlgiggals ofall observation
sequences, free of individual factors and noise. Howewah PCCA and DPCCA
carry the assumption that the temporal correspondencegéetsamples of different

8The recently proposed multiset-CCA [8] can handle multigiguences but requires maximising over
sums of pairwise operations.
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Figure 3.1: Valence annotations along with video stills.

sequences af@own, i.e. that the annotation of experat timet directly corresponds

to the annotation of expeytat the same time. Nevertheless, this assumption is often
violated since different experts exhibit different timgdan annotating the same pro-
cess (e.g., Fig. 3.1, [12]). Motivated by the latter, we sgitthe DPCCA model to
account for thigmisalignment of data samples by introducing a latent warping process
into DPCCA, in a manner similar to [25]. In what follows, westfiy describe some
basic background on time-warping and subsequently prowegefine our model.

3.3.1 Time Warping

Dynamic Time Warping (DTW) [15] is an algorithm for optimalaligning two se-
quences of possibly different lengths. Given sequeidtes RP*%> andY ¢ RP*%y,
DTW aligns the samples of each sequence by minimising theaftsquares cost, i.e.
|XA,—YA,||%, whereA, € RT=*T» andA,, € RTv*7» are binary selection matrices,
with Ty the aligned, common length. In this way, the warping masriseeffectively
re-map the samples of each sequence. Although the numbessibte alignments is
exponential inl,T,,, employing dynamic programming can recover the optimét pat
O(T,T,). Furthermore, the solution must satisfy the boundary,inaity and mono-
tonicity constraints, effectively restricting the spadedo,, A, [15].

An important limitation of DTW is the inability to align sigis of different dimen-
sionality. Motivated by the former, CTW [25] combines CCAdaDTW, thus alowing
the alignment of signals of different dimensionality by jeing into a common space
via CCA. The optimisation function now becomg¥’ XA, — VI'YA |[3, where
X € RP=xT= 'Y € RPv*1= andV,, V, are the projection operators (matrices).

3.3.2 DPCTW Model

We define DPCTW based on the graphical model presented ir3E2g.Given a set
D of N sequences of varying duration, with each sequélge= [x;1,...,x; 1] €
RP:*Ti we postulate the latent common Markov proc&ss: {z,, ...,z;}. Firstly, Z
is warped using the warping operatdy;, resulting in the warped latent sequerge
Subsequently, eacl), generates each observation sequeXgealso considering the



annotator/sequence bids and the observation nois€. We note that we do not im-
pose parametric models for warping processes. Inferenttesigeneral model can be
prohibitively expensive, in particular because of the nieddiandle the unknown align-
ments. We instead decided to handle the inference in twa:s{@dix the alignments
A; and find the laten% andZ;’s, and (ii) given the estimated, Z; find the optimal
warpingsA;. For this, we decided to optimise the following objectivadtion:

EZXA E[Z|X;]A|]3
coper= 303" [EZ B 617

where when using PCCA|Z|X,] = W (W, W] + ¥,)"'X, (Eq. 3.4). For DPCCA,
E[Z|X,] is inferred via RTS smoothing (Sec. 3.2). A summary of thédlgorithm is
presented in Algorithm 1.

i g jF

At this point, it is important to clarify that our model is fiéke enough to be straight-
forwardly used with varying warping techniques. For examfile Gauss-Newton warp-
ing proposed in [24] can be used as the underlying warpingga® for DPCCA, by
replacing the projected datd! X; with E[Z|X,] in the optimisation function. Algo-
rithmically, this only changes the warping process (linéARjorithm 1). Finally, we
note that since our model iterates between estimating teatlapaces with (D)PCCA
and warping, the computational complexity of time warpiagdditive to the cost of
each iteration. In case of the DTW alignment for two sequenttes incurs an extra
cost of O(T,T,). In case of more than two sequences, we utilise a DTW-baged al
rithm, which is a variant of the so-called Guide Tree Progjk@sAlignment, since the
complexity of dynamic programming increases exponegtwith the number of se-
guences. Similar algorithms are used in state-of-theegisnce alignment software in
biology, e.g., Clustar [11]. The complexity of the employadorithm isO(N?T?2 )
whereT,,.. is the maximum (aligned) sequence length ahthe number of sequences.
More efficient implementations can also be used by employamngpus constraints [15].

3.4 Features for Annotator Fusion

In the previous sections, we considered the observed datmsist only of the given
annotationsD = {X,, ..., Xx}. Nevertheless, in many problems one can extract addi-
tional observed information, which we can consider as a foficomplementary input
(e.g., visual or audio features). In fact, in problems wharaotations are subjective
and no objective ground truth is available for any portiorthed data, such input can
be considered as the only objective reference to the anootsequence at hand. Thus,
incorporating it into the model can significantly aid the etetination of the ground
truth.

Motivated by the latter argument, we used two models whicjnaant DPCCA/
DPCTW with inputs. Since the family of component analysishteques we study
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Algorithm 1: Dynamic Probabilistic CCA with Time Warpings (DPCTW)
Data: D = X;, ..., Xy, X7 = [XT ... X%T]
Result P(Z|Xy,...Xy), P(Z|X;),A;,02,i=1: N

1 repeat
2 Obtain alignment matrice\ 4, . .., Ay) by optimising Eq. 3.17 on
E[Z|XT], ... E[Z|XL]*
3 Xz = [(XlAl)T, ey (XNAN)T]
4 repeat
5 EstimateE|[z,| X4 ], V[z|X4] andV [z,z; ,|X%] via RTS
6 fori=1,...,Ndo
7 repeat
8 UpdateW; according to Eqg. 3.14
9 UpdateB; according to Eqg. 3.15
10 until W;, B, converge
11 UpdateA’ according to Eq. 3.16
12 UpdateA™, V7, 3:* according to Sec. 3.2.2
13 until DPCCA converges
14 fori=1,...,Ndo
A, 0 Vz 0 9
15 022{|: 0 AZ},W“BZ,{ 0 VZ},O'ZI}
16 EstimateE[z,|X?], V[2:|XT] andV[z,z;_|X7] via RTS ond,.

17 until £pperw converges
18 * SinceE[z;|X 7] is unkown in the first iteration, us¥; instead.




are typically unsupervised, incorporating inputs leads timorm of supervised learn-
ing. Such models can find a wide variety of applications stheg are able to exploit
label information in addition to observations. A suitabl@mple lies in dimensional
affect analysis, where it has been shown that specific emdtioensions correlate bet-
ter with specific cues, (e.g., valence with facial featussusal with audio features
[13, 7]). Thus, one can know a-priori which features to usesfiecific annotations.

Throughout this discussion, we assume that a set of compkanyanput or features
Y = {Y,,...,Y,} is available, wher&’; ¢ RPv*Tv; . While discussing extensions
of DPCCA, we assume that all sequences have equal lengthn WWberporating time
warping, sequences can have different lengths.

3.4.1 Supervised-Generative DPCCA (SG-DPCCA)

We firstly consider the model where we simply augment the miasen model with a
set of feature¥ ;. In this case, the generative model for DPCCA (Eqg. 3.9) is:

Xt = Wiz, + Biz; + €, (3.18)
Vit = Pjs(2e| W) + hjp(256B;) + €, (3.19)

wherei = {1,...,N}andj = {N + 1,..., N + v + 1}. The arbitrary function&
map the shared space to the feature space in a generativemahitee; ~ N (0, aJQ.I).
The latent priors are still defined as in Eq. 3.7,3.8. By assgrthath is linear, we
can group the parametevg = LW1, ..., Wn, ..., Wy,,], B as the block diagonal of
([By,...,Bn,...,Bxy,]) andX as the block diagonal ¢, . . ., o%Iy, . .., 0% In1,])-
Inference is subsequently applied as described in Sec. 3.2.

This model, which we dub SG-DPCCA, in effect captures a comsiwred space
of both annotationX and available feature¥ for each sequence. In our generative
scenario, the shared space generates both features artdtaomso By further setting
h;, to zero, one can force the representation of the entire reapaceY; onto the
shared space, thus imposing stronger constraints on thedsipace given each anno-
tation Z|X;. As we will show, this model can help identify unwanted amtiohs by
simply analysing the posteriors of the shared latent sp@@enote that the additional
form of supervision imposed by the input on the model is reseent of SPCA for PCA
[22]. The discriminative ability added by the inputs (oréég) also relates DPCCA to
LDA [2]. The graphical model of SG-DPCCA is illustrated ingFi3.3(b).

SG-DPCCA can be easily extended to handle time-warping sithed in Sec. 3.3
for DPCCA (SG-DPCTW). The main difference is that now one lddwave to introduce
one more warping function for each set of features, resyitira set ofV + v functions.
Denoting the complete data/input set2s= {X;,..., Xy, Y, ..., Y, }, the objective



function for obtaining the time warping functiods for SG-DPCTW can be defined as:

Y [|[E[Z|D)A; — E[Z|D]]
Lspperwe = ZZ N+ ) (N+v=1)

i g, g#

A%
. (3.20)

3.4.2 Supervised-Discrimative DPCCA (SD-DPCCA)

The second model augments the DPCCA model by regressingeapvén features. In
this case, the posterior of the shared space (Eq. 3.7) isfated as

p(zt‘ztfb Yl:w Aa Vﬁ) ~

N(A.ziy ) hi(Y|F;), V.), (3.21)

J=1

where each functioh; performs regression on the featufgs, while F; € R*"v are
the loadings for the features (where the latent dimensigynal d). This is similar to
how input is modelled in a standard LDS [6]. To find the pararsgtwe maximise the
complete-data likelihood (Eqg. 3.12), where we replace #do®sd term referring to the
latent probability with Eq. 3.21,

T
> InP(#]2-1, Y10, A, V2). (3.22)

In this variation, the shared space at step generated from the previous latent state
z;_, as well as the features at step- 1, Z;.’Zl v;+—1 (Fig. 3.3(c)). We dub this model
SD-DPCCA. Without loss of generality we assums linear, i.e.h; ; = W, ,z,, while

we model the feature signal only in the shared spacehi.p= 0. Finding the saddle
points of the derivatives with respect to the parameteigyitne following updates for
the matriceA, andF;,Vj =1,...,v

T v T -1
= (Z E[ZtZtT—1] - ZF;yj,t> (Z Elz; 124 ) ) (3.23)
t=2 j=1 t=2

F;:(E[ ] — AE[z, ] — ZFY)Yl (3.24)
i=1,i#7]

Note that as with the loadings on the shared/individual spd®&v andB), the opti-

misation of A, andF; matrices should again be determined recursively. Fintil,

estimation ofVz also changes accordingly:

vV, = T—1 Zt 2( [tht] E[ZtZ'ﬁl]AZT
CA: ‘Elze 12y | + ALE[z, 127, |ALT
+ Z;zl(AzE[zt,l]Y;TF;T + F;YjE[Zzll]AzT (3.25)
FEY; Y YIRS — Bl YR
FY Bl
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Figure 3.3: Comparing the model structure of DPCCA (a) to[3BzCA (b) and SD-
DPCCA (c). Notice that the shared spacgenerates both observations and features in
SG-DPCCA, while in SD-DPCCA, the shared space at tinsggenerated by regressing
from the features and the previous shared space state.

SD-DPCCA can be straight-forwardly extended with timepuag as with DPCCA
in Sec. 3.3, resulting in SD-DPCTW. Another alignment s&peiquired before per-
forming the recursive updates mentioned above in orderddi@ correct training/testing
pairs forz, andY. Assuming the warping matrices afe, andA,, then in Eq. 3.2%
is replaced withA ,z andy with A ,y. The influence of feature¥ on the shared latent
spaceZ in SD-DPCCA and SG-DPCCA is visualised in Fig. 3.3.

3.4.3 Varying Dimensionality

Typically, we would expect the dimensionality of a set of arations to be the same.
Nevertheless in certain problems, especially when usimgtifeatures as in SG-DPCCA
(Sec. 3.4.1), this is not the case. Therefore, in case thenadittons/input features are
of varying dimensionalities, one can scale the third terrtheflikelihood (Eq. 3.12) in
order to balance the influence of each sequence during tepregardless of its dimen-
sionality:

T v
1
Z (ZD—Z’H (P(yt7j|zt,W B],O'j)>—|—

7

N
1
—In (P(x;|2:, W;,Bj,07)) ) (3.26)

3.5 Ranking and filtering annotations

In this section, we will refer to the issue of ranking and filig available annotations.
Since in general, we consider that there is no “ground tratiilable, it is not an easy
task to infer which annotators should be discarded and wkegh. A straightforward
option would be to keep the set of annotators which exhibéaedt level of agreement



with each other. Nevertheless, this naive criterion will suffice in case where e.g., all
the annotations exhibit moderate correlation, or where gednnotations are clustered
in groups which are intra-correlated but not inter-comesla

The question that naturally arises is how to rank and evaltre annotators when
there is no ground truth available and their inter-corretats not helpful. We remind
that DPCCA maximises the correlation of the annotationbénshared spacg, by re-
moving bias, temporal discrepancies and other nuisancesdach annotation. It would
therefore be reasonable to expect the lapesteriors for each annotatior4 X;), to be
as close as possible. Furthermore, the closer the postgrar each annotatiorZ(X;)
to the posterior given all sequenc@sD), the higher the ranking of the annotator should
be, since the closer it is, the larger the portion of the shar®rmation is contained in
the annotators signal.

The aforementioned procedure can depaimmers, i.e. annotators who do not even
pay attention at the sequence they are annotatingadvaisarial or malicious annota-
tors that provide erroneous annotations due to e.g., a cbaoflinterests and can rank
the confidence that should be assigned to the rest of the aonat Nevertheless, it
does not account for the case where multiple clusters oftators are intra-correlated
but not inter-correlated. In this case, it is most probabd the best-correlated group
will prevail in the ground truth determination. Yet, thisetonot mean that the best-
correlated group is the correct one. In this case, we use @f sgputs (e.g., tracking
facial points), which can essentially represent the “gtdeshdard”. The assumption un-
derlying this proposal is that the correct sequence featsineuld maximally correlate
with the correct annotations of the sequence. This can beyktforwardly performed
with SG-DPCCA, where we attali|Y (shared space given input) and comparg X,
(shared space given annotatign

The comparison of latent posteriors is further motivate®by, Aumann’s agreement
theorem [1]: “If two people are Bayesian rationalists withmamon priors, and if they
have common knowledge of their individual posteriors, thegir posteriors must be
equal”. Since our model maintains the notion of “common kiealge” in the estimation
of the shared space, it follows from Aumann’s theorem thatittaividual posteriors
Z|X; of each annotationshould be as close as possible. This is a sensible assumption
since one would expect that if all bias, temporal discreanand other nuisances are
removed from annotations, then there is no rationale forpi&eriors of the shared
space to differ.

A simple algorithm for filtering/ranking annotations (igihg spectral clustering [18])
can be found in Algorithm 2. The goal of the algorithm is to ftme clusters(', and
C,, containing (i) the set of annotations which are correlatgtth the ground truth,
and (ii) the set of “outlier” annotations, respectively.rdily, DPCCA/DPCTW is ap-
plied. Subsequently, a similarity/distance matrix is ¢outed based on the posterior



distances of each annotati@inX; along with the feature®|Y. By performing spectral
clustering, one can keep the cluster to whaly belongs () and disregard the rest of
the annotations belonging iti,. The ranking of the annotators is computed implicitly
via the distance matrix, as it is the relative distance oh&dX, to Z|Y . In other words,

the feature posterior is used here as the “ground truth”.eDdimg on the application
(or in case features are not available), one can use therpogie’en all annotations,
Z|X,,..., Xy instead ofZ| Y. Examples of distances/metrics that can be used include
the alignment error (see Sec. 3.3) or the KL divergence vwermal distributions
(which can be made symmetric by employing e.g., the Jenkan+s®n divergence, i.e.

Dys(Pl|Q) = 3Dk 1(P||Q) + 3Dk (Ql|P))-

Algorithm 2: Ranking and filtering annotators
Data: Xi,..., Xy, Y
Result Rank of eaclX;, C.
1 begin
2 Apply SG-DPCTW/SG-DPCCAX,, ..., XN, Y)
3 | ObtainP(Z|Y), P(Z|X;),i=1,...,N
4 Compute Distance Matri® of [P(Z|X,),..., P(Z|Xy), P(Z|Y)]
5 | NormaliseS,L «+ I - D 2SD>
6
7
8

{C,,C,} < Spectral Clusterind()
KeepC, whereP(Z|Y) € C,
Rank eachX; € C, based on distance &¢f(Z|X;) to P(Z|Y)

9 In caseY is not available, replacB(Z|Y) with P(Z|X1.n).

We note that in case of irrelevant or malicious annotatisresassume that the cor-
responding signals will be moved to the private space anddnatl interfere with the
time warping. Nevertheless, in order to ensure this, ondrogse constraints on the
warping process. This is easily done by modifying the DTW impasing e.g., slope
or global constraints such as the Itakura ParallelograrheSakoe-Chiba band, in or-
der to constraint the warping path while also decreasingtimeplexity (c.f., Chap. 5,
of [15]). Furthermore, other heuristics can be applied, digtly filter out the most
irrelevant annotations by applying SG-DPCCA without timarping, or threshold the
warping objective directly (Eq. 3.17).

3.6 Experiments

In order to evaluate our models, we present a set of expetinmnboth synthetic
(Sec. 3.6.1) and real (Sec. 3.6.2 & 3.6.3) data.



3.6.1 Synthetic Data

For synthetic experiments, we employ a setting similar &).[A set of 2D spirals
are generated a%; = UTZM” + N, whereZ e R>*7 is the true latent signal which
generates th&;, while the U, € R?*? andM,; € R”*™ matrices impose random
spatial and temporal warping. The signal is furthermoregysbed by additive noise
via the matrixN € R**7T. EachN(i, j) = e x b, wheree ~ N(0,1) andb follows a
Bernoulli distribution withP(b = 1) = 1 for Gaussian an@®(b = 1) = 0.4 for spike
noise. The length of the synthetic sequences varies, bppi®aimately 200.

This experiment can be interpreted as both of the problena&examining. Viewed
as a sequence alignment problem the goal is to recover tirenadint of each nois¥X;,
where in this case the true alignment is known. Considehegtoblem of fusing mul-
tiple annotations, the latent sigriélrepresents the true annotation while the individual
X, form the set of noisy annotations containing annotatiogege characteristics. The
goal is to recover the true latent signal (in DPCCA terEj&| X, . .., Xy]).

The error metric we used computes the distance from the grouth alignmentQ)
to the alignment recovered by each algorithfx) (24], and is defined as:

dist(TT, IT) + dist(IT, IT)

error= R ,
Th+Ta
7A
. . i i T2
dist(II;, IL,) = > min({[|x{” — z{||});2)), (3.27)
=1

whereIl; € R7A*N contains the indices corresponding to the binary selectiatrices
A,;, as defined in Sec. 3.3.1 (and [24]), whit€) refers to thej-th row of II. For
gualitative evaluation, in Fig. 3.4, we present an exampkepplying (D)PCTW on 5
sequences. As can be seen, DPCTW is able to recover the gumiskd, latent sig-
nal which generated the noisy observations (Fig. 3.4(d))levalso aligning the noisy
sequences (Fig. 3.4(c)). Due to the temporal modelling cCDW, the recovered la-
tent space is almost identical to the true sighalFig. 3.4(b)). PCTW on the other
hand is unable to entirely remove the noise (Fig. 3.4(dg. Bi5 shows further results
comparing related methods. CTW and GTW perform comparablywo sequences,
both outperforming DTW. In general, PCTW seems to perfortteb¢han CTW, while
DPCTW provides better alignment than other methods condpare

3.6.2 Real Data I: Fusing Multiple Annotations

In order to evaluate (D)PCTW in case of real data, we empleystEMAINE database
[12]. The database contains a set of audio-visual recosdhgubjects interacting with
operators. Each operator assumes a certain personalppy,tgloomy, angry and prag-
matic - with a goal of inducing spontaneous emotions by thgesi during a naturalistic
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Figure 3.4: Noisy synthetic experiment. (a) Initial, notgye series. (b) True latent
signal from which the noisy, transformed spirals wherdaidin (a). (c) The alignment
achieved by DPCTW. The shared latent space recovered by>(th\WPand (e) DPCTW.
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Figure 3.5: Synthetic experiment comparing the alignmétatireed by DTW, CTW,
GTW, PCTW and DPCTW on spirals with spiked and Gaussian noise
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Figure 3.6: Applying (D)PCTW to continuous emotion anniatas. (a) Original va-
lence annotations from 5 experts. (b,c) Alignment obtaibgd®CTW and DPCTW
respectively, (d,e) Shared space obtained by PCTW and DP@&BEyé&ctively, which
can be considered as the “derived ground truth”.

conversation. We use a portion of the database containaagdmgs of 6 different sub-
jects, from over 40 different recording sessions, with aimaxn length of 6000 frames
per segment. As the database was annotated in terms of endatiensions by a set of
experts (varying from 2 to 8), no single ground truth is pdad along with the record-
ings. Thus, by considerinX to be the set of annotations and applying (D)PCTW, we
obtainE[Z|D] € R™*T (given allwarped annotations) which represents the shared
latent space with annotator-specific factors and noise vethdNe assume th&lZ | D]
represents the ground truth. An example of this procedur€PCTW can be found
in Fig. 3.6. As can be seen, DPCTW provides a smooth, aligatahate, eliminating
temporal discrepancies, spike-noise and annotator biathid experiment, we evalu-
ate our models on four emotion dimensions: valence, arppsaler, and anticipation
(expectation).

To obtain features for evaluating the ground truth, we tithekfacial expressions of
each subject via a patrticle filtering tracking scheme [14ie Tracked points include the
corners of the eyebrowg points), the eyes3(points), the nose3(points), the mouth4(
points) and the chinl(point), resulting in 20 2D points for each frame.

For evaluation, we consider a training sequeKgédor which the set of annotations
A, ={ai,...,agr}is known. From this set4,), we derive the ground trutfi7 x - for
(D)PCTW,GTx = E[Z].A,]. Using the tracked pointBx for the sequence, we train a
regressor to learn the functigi : Px — G7x. In (D)PCTW,P, is firstly aligned with
GT . as they are not necessarily of equal length. Subsequenty @i testing sequence
Y with tracked pointsP,, using f, we predict each emotion dimensiofi.(P,)). The

SWe note that latent (D)PCTW posteriors used, &K, are obtained on time-warped observations,
e.g.Z|X;A; (See Alg. 1)



procedure for deriving the ground truth is then applied anahnotations of sequence
Y, and the resulting/7, is evaluated againgt,(P,). The correlation coefficient of
the GT, and f,(P,) (after the two signals are temporally aligned) is then usetha
evaluation metric foall compared methods.

The reasoning behind this experiment is that the “bestirestion of the ground truth
(i.e. the gold standard) should maximally correlate withd¢brresponding input features
- thus enabling any regressor to learn the mapping functioreraccurately.

We also perform experiments with the supervised variantBRCTW, i.e. SG-
DPCTW and SD-DPCTW. In this case, a set of featuyess used for inferring the
ground truth,Z|D. Since we already used the facial trackings for evaluaiioorder
to avoid biasing our resuft§ we use features from the audio domain. In particular,
we extract a set of audio features consisting of 6 mel-fraqu&€epstrum Coefficients
(MFCC), 6 MFCC-Delta coefficients along with prosody featifsignal energy, root
mean squared energy and pitch), resulting in a 15 dimendeetare vector. The audio
features are used to derive the ground truth with our supetvnodels, exactly acting
an objective reference to our sequence. In this way, we impdsirther constraint on
the latent space: it should also explain the audio cues aha@myp the annotations,
given that the two sets are correlated. Subsequently, ttieegure described above for
unsupervised evaluation with facial trackings is employed

For regression, we employ RVM [19] with a Gaussian kernel. pgeform both
session-dependent experiments, where the validation eisrmed on each session
separately, and session-independent experiments whinedt sessions were used for
training/testing. In this way, we validate the derived grduruth generalisation ability
(i) when the set of annotators is the same and (ii) when thefsetnotators may differ.

Session-dependent and session-independent resultseaenfad in Tables 3.1 and
3.2. We firstly discuss the unsupervised methods. As candrg &king a simple anno-
tator average (A-AVG) gives the worse results (as expegcteth a very high standard
deviation and weak correlation. The model of Raykar et &) fitovides better results,
which can be justified by the variance estimation for eaclotatar. Modelling annota-
tor bias and noise with (D)PCCA further improves the resuttis important to note that
incorporating alignment is significant for deriving the gnal truth; this is reasonable
since when the annotations are misaligned, shared infmmatay be modelled as in-
dividual factors or vice-versa. Thus, PCTW improves theltssurther while DPCTW
provides the best results, confirming our assumption thataeing dynamics, tempo-
ral alignment, modelling noise and individual-annotat@sdeads to a more objective
ground truth. Finally, regarding supervised models SG-D®RCand SD-DPCTW, we
can observe that the inclusion of audio features in the growth generation improves
the results, with SG-DPCTW providing better correlateditisghan SD-DPCTW. This

10since we use the facial points fevaluating the derived ground truth, if we had also used them for
deriving the ground truth we would bias the evaluation procedure.



is reasonable since in SG-DPCTW the featu¥esre explicitly generated from the

shared space, thus imposing a form of strict supervisioopmparison to SD-DPCTW
where the inputs essentially elicit the shared space.

Table 3.1: Comparison of ground truth evaluation based erctirelation coefficient

(COR), on session dependent experiments. The standardtidevover all results is
denoted by.

SD-DPCTW  SG-DPCTW DPCTW PCTW
COR o COR o COR o COR o
Valence 0.78 018 0.78 017 0.77 018 0.70 0.18
Arousal 0.75 018 077 019 075 022 064 022
Power 0.78 013 085 010 0.77 016 0.76 0.10
Expectaton 0.82 009 083 010 0.78 011 0.75 0.16
DPCCA PCCA RAYKAR [16] A-AVG
COR o COR o COR o COR o
Valence 0.64 021 063 020 0.61 0.20 0.54 036
Arousal 063 023 063 026 0.60 0.25 042 041
Power 068 016 067 018 0.62 0.22 0.42 036
Expectaton 0.68 016 0.74 017 0.62 0.20 0.48 0.40

Table 3.2: Comparison of ground truth evaluation based erctirelation coefficient

(COR), on session independent experiments. The standeiatida over all results is
denoted by.

SD-DPCTW  SG-DPCTW DPCTW PCTW
COR o COR o COR o COR o
Valence 073 019 073 019 072 022 066 024
Arousal 0.74 015 074 017 071 020 0.61 0.23
Power 072 028 075 024 072 034 070 019
Expectaton 0.76 021 076 015 0.73 020 0.70 018
DPCCA PCCA RAYKAR [16] A-AVG
COR o COR o COR o COR o
Valence 0.62 028 058 023 057 0.27 0.53 0.33
Arousal 059 023 052 028 0.50 0.29 0.33 0.40
Power 060 026 058 027 057 0.27 039 031
Expectation 0.63 020 064 025 0.63 0.22 0.44 0.39

Ranking Annotations

We perform the ranking of annotations as proposed in Algori to a set of emotion
dimension annotations from the SEMAINE database.

In Fig. 3.7(a), we illustrate an example where an irrelevainictured annotation
(sinusoid), has been added to a set of five true annotatidmgo@sly the sinusoid can
be considered a spammer annotation since essentiallyintlépendent of the actual
sequence at hand. In the figure we can see that (i) the dengeaddjtruth is not affected
by the spammer annotation, (ii) the spammer annotationngptetely captured in the

private space, and (iii) that the spammer annotation isctlden the distance matrix of
E[Z|X;] andE[Z|X].



In Fig. 3.7(b), we present an example where a set of 5 anootahas been used
along with 8 spammers. The spammers consist of random Gaudisitributions along
with structured periodical signals (i.e. sinusoids). We sae that it is difficult to dis-
criminate the spammers by analysing the distance matrX since they do maintain
some correlation with the true annotations. By applyingohithm 2, we obtain the dis-
tance matrix of the latent posteridfsX; andZ|D. In this case, we can clearly detect
the cluster of annotators which we should keep. By applypecsal clustering, the
spammer annotations are isolated in a single cluster, helshared space along with
the true annotations fall into the other cluster. This i®albvious by observing the
inferred weight vectorW), which is near-zero for sequences 6-14, implying that the
shared signal is ignored when reconstructing the specifiotation (i.e. the reconstruc-
tion is entirely from the private space ). Finally, this is@bbvious by calculating the
KL divergence comparing each individual posterfiX; to the shared space posterior
given all annotation&|D, where sequences 6-14 have a high distance while 1-5 have a
distance which is very close to zero.

In Fig. 3.7(c), we present another example where in this,casgoined two sets
of annotations which were recorded for two distinct segasr{@nnotators 1-6 for se-
guence A and annotators 7-12 for sequence B). In the distaatex taken on the ob-
servationsX, we can see how the two clusters of annotators are alreadsirdisable,
with the second cluster, consisting of annotations for saqa B, appearing more cor-
related. We use the facial trackings for sequence A (traeketkescribed in this section)
as the featureY, and then apply Algorithm 2. As can be seen in the distancexrait
[Z|X;,Z|Y], (i) the two clusters of annotators have been clearly sépdrand (ii) the
posterior of feature&|Y clearly is much closer to annotations 1-6, which are the true
annotations of sequence A.

3.6.3 Real Data Il: Action Unit Alignment

In this experiment we aim to evaluate the performance of (X)W for the temporal
alignment of facial expressions. Such applications candefuli for methods which
require pre-aligned data, e.g. AAM (Active Appearance Msgdd-or this experiment,
we use a portion of the MMI database which contains more tlf@hva&leos, ranging
from 100 to 200 frames. Each video is annotated (per fram&rims of the temporal
phases of each Action Unit (AU) manifested by the subjechdpeecorded, namely
neutral, onset, apex and offset. For this experiment, wek tifae facial expressions of
each subject capturing 20 2D points, as in Sec. 3.6.2.

Given a set of videos where the same AU is activated by theestshjthe goal is to
temporally align the phases of each AU activation aceblsgideos containing that AU,
where the facial points are used as features. In the cont®&®PGTW, eachX; is the
facial points of videa containing the same AU, whil&|X; is now the common latent
space given videq the size of which is determined by cross-validation, armbisstant
over all experiments for a specific noise level.
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Figure 3.7: Annotation filtering and ranking (black - low, ke high). (a) Experiment
with a structured false annotation (sinusoid). The shapades is not affected by the
false annotation, which is isolated in the individual spa@® Experiment with 5 true
and 9 spammer (random) annotations. (c) Experiment witbédnnotations, 7 irrele-
vant but correlated annotations (belonging to a differequence). The facial poin¥,
corresponding to the 6 true annotations, were used for gigp@n (with SG-DPCCA).



In Fig. 3.8 we present results based on the number of misaligrames for AU
alignment, on all action unit temporal phases (neutralgegrapex, offset) for AU 12
(smile), on a set of 50 pairs of videos from MMI. For this expemt, we used the
facial features relating to the lower face, which consistdf2D points. The features
were perturbed with sparse spike noise in order to simutegertis-detection of points
with detection-based trackers, in order to evaluate thestmless of our techniques.
Values were drawn from the normal distributidf(0, 1) and added (uniformly) to 5%
of the length of each video. We gradually increased the nurobieatures perturbed
by noise from O to 4. To evaluate the accuracy of each algurithie use a robust,
normalised metric. In more detail, let us say that we haveweos, with featureX;
andX,, and AU annotationgl; and.4,. Based on the features, the algorithm at hand
recovers the alignment matricés, and A,. By applying the alignment matrices on
the AU annotationsA;A; and.A,A,), we know to which temporal phase of the AU
each aligned frame of each video corresponds to. Therdtora,given temporal phase
(e.g., neutral), we have a set of frame indices which argasdito the specific temporal
phase in video 1Ph, and video 2,Ph,. The accuracy is then estimated%%%l%.
This essentially corresponds to the ratio of correctlyradigframes to the total duration
of the temporal phase accross the aligned videos.

As can be seen in the average results in Fig. 3.8, the begirpenice is clearly
obtained by DPCTW. It is also interesting to highlight thewacy of DPCTW on
detecting the apex, which essentially is the peak of theesgion. This can be attributed
to the modelling of dynamics, not only in the shared lateratcgpof all facial point
sequences but also in the domain of the individual charattes of each sequence (in
this case identifying and removing the added temporal spil@se). PCTW peforms
better on average compared than CTW and GTW, while the kattemethods perform
similarly. It is interesting to note that GTW seems to ovéop® CTW and PCTW
for aligning the apex of the expression for higher noiselkevEurthermore, we point-
out that the Gauss-Newton warping used in GTW is likely tdquen better for longer
sequences. Example frames from videos showing the undligné DPCTW-aligned
videos are shown in Fig. 3.9..
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Chapter 4
FROG Interest Model

In order to deal with the problem of interest prediction undealistic and uncon-
trolled scenarios such as in FROG, we firstly discretize th@inuous annotations to
cover three classes, which are of main interest. In moreldeta solve a series of
binary classification problems, as seen in Fig. 4.1. As featuve utilise the pose and
3D points, as generated by the FROG tracker. The first stepves deciding whether
the input points form a valid facial structure, a facial shap other words. Secondly,
given that we have a shape structure, we infer whether tokeadaperson is interested
or not. Finally, given that the person is interested, weweette level of interest, be it
low or high.

Regarding the data used for training the models, we haveabhdbapproximately
65000 frames at 64 FPS, where approximately 30000 framessargned to low inter-
est and 30000 frames to high interest, while the rest argrasdito no interest (3000
frames) and the class where no face is recognised (trackar @000 frames). The
imbalanced nature of some classes is naturalistic to the alahand, and has been
dealt with by selecting the proper misclassification pgnaithin SVM. During cross-
validation, the accuracy of level 0 (Face Verification) w&9%%, of Level 1 (Inter-
est vs. No-Interest) 9978 and finally, Level 2 (Low vs. High Interest) 97% The
confusion matrices when training on the entire set utitjdime parameters inferred by
cross-validation, are shown in Table 4.1.

LEVELO LEVEL 1 LEVEL 2

0.999 0.001 0.992 0.008 0.993 0.007
0.000 1.000 0.000 1.000 0.018 0.982

Table 4.1: Confusion matrices for Level O (Face VerificaYidrevel 1 (No Interest vs.
Interest) and level 2 (Low vs. High Interest).

We note that for each step, binary Support Vector MachineMpdlassifiers were
employed. As aforementioned, we utilised the pose and thle@@marks, resulting in
201 feature vector dimensionality. For SVM, we used a Rad8gais Function (RBF)

kernel, i.e. for input;, K (x,x;) = exp {L")?} with r2 being the length scale. As

r2
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Figure 4.1: Interest prediction model for FROG.

it is well known, SVM’s, for a given class labg|, solve the following problem:
1
min §HW||23.t.yi(xiw +b)—1> 0V (4.1)
wherew is the inferred set of weights, angthe class labels, wherg=+1 or —1, and

b simply represents a constant bias. Examples of using teeesttprediction model on
FROG data are depicted in Figure 4.2.
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Figure 4.2: Sample output by utilising the Interest Predicmodel for FROG.



Chapter 5

Conclusion

A method for prediction of the visitors’ implicit affectivieedback (e.g. attention
and interest) was developed for FROG project. The main geal o develop a set
of visual methods for detecting human affective statesusiolg users’ positive and
negative reactions to FROG robot and their overall levehtérest and engagement in
the current interaction with FROG. Facial landmarks as aglace pose were used for
building our models. Based on our experiments in both symtlaad real FROG data,
this method meets all the requirements of the FROG projgetrdeng the prediction of
the visitors’ implicit affective feedback.
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